- Python深度学习实践:建立端到端的自动驾驶系统
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:建立端到端的自动驾驶系统1.背景介绍自动驾驶系统是当今科技领域最具挑战性和前景的应用之一。它融合了计算机视觉、深度学习、规划与控制等多个领域的先进技术,旨在实现车辆的自主感知、决策和操控。随着人工智能技术的不断发展,越来越多的公司和研究机构投入了大量资源来开发自动驾驶系统。Python作为一种高效、易学且开源的编程语言,在这一领域扮演着重要角色。本文将探讨如何利用Pyth
- 从0开始学习计算机视觉--Day08--卷积神经网络
之前我们提到,神经网络是通过全连接层对输入做降维处理,将输入的向量通过矩阵和激活函数进行降维,在神经元上输出激活值。而卷积神经网络中,用卷积层代替了全连接层。不同的是,这里的输入不再需要降维,而是可以保留输入的空间结构,例如输入的是32×32×3的图片,在全连接层中是3072×1的向量,而卷积层里则保持不变。这里的改变的地方是对于同样的WX的函数形式,这里是把5×5×3的权重矩阵(也叫卷积核)向量
- Prompt相关论文阅读(02)--Auto-CoT(2024-11-25)
zhilanguifang
论文promptengineering论文阅读笔记
论文阅读笔记2024-11-24~2024-11-25Auto-CoT:AutomaticChainofThoughtPromptinginLargeLanguageModels(ICLR2023)碎碎念:复现代码和笔记保存到gitee仓库上海交通大学的学生在亚马逊实习的时候的成果ICLR2023摘要:LLM能够通过生成中间推理步骤执行复杂的推理。提供这些步骤用于提示演示叫做思维链提示CoT。Co
- Python打卡:Day40
#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Dataset#DataLoader是PyTorch中用于加载数据的工具fromtorchvisionimportdatasets,transforms#torchvision是一个用于计算机视觉的库,
- BigQuery对象引用(ObjectRef)全面指南:一站式整合结构化与非结构化多模态数据分析
引言企业需要同时管理有组织表格中的结构化数据,以及日益增长的非结构化数据(如图片、音频和文档)。传统上,联合分析这些多样化数据类型非常复杂,通常需要使用不同的工具。非结构化媒体通常需要导出到专门的服务进行处理(如图片分析需计算机视觉服务,音频需语音转文本引擎),这会造成数据孤岛,阻碍全局分析视角的建立。以虚构的电商支持系统为例:结构化的工单信息存储在BigQuery表中,而相关的支持通话录音或损坏
- Halcon学习之select_shape()算子参数介绍
一、算子介绍select_shape()是HALCON中用于基于形状特征筛选区域的关键算子,广泛应用于图像分割、目标检测和工业质检等领域。它允许用户根据指定的几何特征从输入区域集合中选择符合条件的区域。至于为什么单独介绍这个算子呢,因为他筛选特征的方式有太多种了,如果可以熟练的掌握这些特征,那在后面的例程学习以及实际应用中,可谓是得心应手了。二、算子参数select_shape(Regions:S
- 【论文阅读】Dynamic Few-Shot Visual Learning without Forgetting
Bosenya12
论文阅读
系统概述如下:(a)一个基于卷积神经网络(ConvNet)的识别模型,该模型包含特征提取器和分类器;(b)一个少样本分类权重生成器。这两个组件都是在一组基础类别上训练的,我们为这些类别准备了大量训练数据。在测试阶段,权重生成器会接收少量新类别的训练数据以及基础类别的分类权重向量(分类器框内的绿色矩形),并为新类别生成相应的分类权重向量(分类器框内的蓝色矩形)。这样,卷积神经网络就能同时识别基础类别
- 【论文阅读】Few-Shot PPG Signal Generation via Guided Diffusion Models
Bosenya12
论文阅读
从少量样本数据选择到后处理的整体框架。首先,扩散模型在N样本数据集和指导下的训练。接着,模型生成一个增强的数据集,并进一步优化以提高保真度。最后,这些合成数据与少量样本训练数据集结合,用于基准模型的训练和评估。数据分布从最初的红色变为保真度增强的蓝色,这表明模型与真实数据更加吻合,如简化后的数据分布示意图所示。这篇文章的核心内容是介绍了一种名为BG-Diff(Bi-GuidedDiffusion)
- [论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
张较瘦_
前沿技术论文阅读人工智能
读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法论文标题:Meta-Fair:AI-AssistedFairnessTestingofLargeLanguageModelsarXiv:2507.02533Meta-Fair:AI-AssistedFairnessTestingofLargeLanguageModelsMiguelRomero-Arjona,JoséA.Parejo,Jua
- 【心灵鸡汤】深度学习技能形成树:从零基础到AI专家的成长路径全解析
智算菩萨
人工智能深度学习
引言:技能树的生长哲学在这个人工智能浪潮汹涌的时代,深度学习犹如一棵参天大树,其根系深深扎入数学与计算科学的沃土,主干挺拔地承载着机器学习的核心理念,而枝叶则繁茂地延伸至计算机视觉、自然语言处理、强化学习等各个应用领域。对于初入此领域的新手而言,理解这棵技能树的生长规律,掌握其形成过程中的关键节点和发展阶段,将直接决定其在人工智能道路上能够走多远、攀多高。技能树的概念源于游戏设计,但在学习深度学习
- 多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
zhaoyi_he
重构人工智能
一、引言:为什么多模态是AI发展的下一场革命?过去十年,深度学习推动了计算机视觉和自然语言处理的飞跃,但两者的发展路径长期割裂。随着生成式AI和大模型时代的到来,**多模态大模型(MultimodalFoundationModels)**以统一的建模方式处理图像、文本、音频、视频等多源数据,重塑了“感知-认知-决策”链条,为AGI迈出关键一步。OpenAI的GPT-4o、Google的Gemini
- 图像分割技术详解:从原理到实践
lanjieying
本文还有配套的精品资源,点击获取简介:图像分割是图像处理领域将图像分解为多个区域的过程,用于图像分析、特征提取等。文章介绍了图像分割的原理,并通过一个将图像划分为2*4子块的示例,展示了如何使用Python和matplotlib库中的tight_subplot函数进行图像分割和展示。文章还探讨了图像分割在不同领域的应用,以及如何在机器学习项目中作为数据预处理步骤。1.图像分割基本概念在图像处理领域
- OpenCV 图像操作:颜色识别、替换与水印添加
目录引言代码实现1.导入必要的库2.图像加法3.图像直接相加4.颜色加权加法5.HSV颜色空间转换概念作用6.查找颜色范围对应的像素点7.与运算-生成掩膜8.添加水印9.主函数总结引言在计算机视觉领域,OpenCV是一个强大的库,提供了丰富的图像操作功能。本文将详细介绍如何使用OpenCV进行图像加法、颜色加权加法、HSV颜色空间转换、颜色范围查找、与运算生成掩膜以及添加水印等操作,并给出相应的P
- YOLO学习笔记 | 从YOLOv5到YOLOv11:技术演进与核心改进
北斗猿
YOLO学习从零到1YOLO目标检测算法python计算机视觉
从YOLOv5到YOLOv11:技术演进与核心改进深度解析一、YOLO系列发展概述YOLO(YouOnlyLookOnce)目标检测算法自2016年诞生以来,凭借其"单次检测"的独特理念和卓越的实时性能,持续引领着计算机视觉领域的技术革新。从JosephRedmon的初代YOLO到AlexeyBochkovskiy的YOLOv4,再到Ultralytics团队的YOLOv5及后续系列,这一算法家族
- 《卷积神经网络到Vision Transformer:计算机视觉的十年架构革命》
HeartException
人工智能学习
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站题目《卷积神经网络到VisionTransformer:计算机视觉的十年架构革命》展开深度解析,全文采用技术演进史+架构对比+产业影响的三段式结构,附关键数据与趋势预测:卷积神经网络到VisionTransformer:计算机视觉的十年架构革命副标题:从局部感知到全局建模,一场改变AI视觉基石的
- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 【LangChain编程:从入门到实践】LangChain与其他框架的比较
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】LangChain与其他框架的比较1.背景介绍1.1人工智能发展现状在当今时代,人工智能(AI)已经成为科技领域中最热门和最具革命性的话题之一。随着计算能力的不断提升和算法的持续优化,AI系统正在不断扩展其应用范围,包括自然语言处理、计算机视觉、决策系统等各个领域。1.2LangChain概述在这种背景下,LangChain作为一个新兴的AI框架应运而生。L
- PHP接单涨薪系列(九)之计算机视觉实战:PHP+Stable Diffusion接单指南(2025高溢价秘籍)
攻城狮凌霄
PHPPHP接单涨薪AIphp计算机视觉stablediffusion
案例场景某电商公司使用本方案后,产品图制作成本降低90%,广告转化率提升35%,单月节省设计费用超¥80,000。本文将彻底解密如何用PHP+AI视觉技术接取高单价设计外包,让你在竞争激烈的市场中脱颖而出!一、视觉设计市场的AI革命1.1传统设计vsAI设计设计任务传统流程AI流程需求沟通初稿设计反复修改最终交付AI生成微调即时交付2025年设计市场数据对比:指标传统设计AI设计提升幅度单图制作时
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- ConvNeXT:面向 2020 年代的卷积神经网络
摘要视觉识别的“咆哮二十年代”始于VisionTransformer(ViT)的引入,ViT很快取代了ConvNet,成为图像分类任务中的最新最强模型。然而,vanillaViT在应用于目标检测、语义分割等通用计算机视觉任务时面临困难。HierarchicalTransformer(如SwinTransformer)重新引入了若干ConvNet的先验知识,使Transformer成为实用的通用视觉
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- 计算机视觉中的Transformer:ViT模型详解与代码实现
AI大模型应用工坊
计算机视觉transformer人工智能ai
计算机视觉中的Transformer:ViT模型详解与代码实现关键词:计算机视觉、Transformer、ViT、自注意力机制、图像分块摘要:传统卷积神经网络(CNN)统治计算机视觉领域多年,但2020年一篇《AnImageisWorth16x16Words:TransformersforImageRecognitionatScale》的论文打破了这一格局——它将NLP领域的Transformer
- 《YOLO11的ONNX推理部署:多语言多架构实践指南》
空云风语
YOLO人工智能深度学习目标跟踪人工智能计算机视觉YOLO
引言:YOLO11与ONNX的相遇在计算机视觉的广袤星空中,目标检测始终是一颗耀眼的明星,其在自动驾驶、智能安防、工业检测、医疗影像分析等诸多领域都有着举足轻重的应用。想象一下,自动驾驶汽车需要实时准确地检测出道路上的车辆、行人、交通标志;智能安防系统要快速识别出监控画面中的异常行为和可疑人员;工业生产线上,需要精准检测产品的缺陷;医疗影像分析中,辅助医生检测病变区域。这些场景都对目标检测技术的准
- 【CVPR2024】计算机视觉|即插即用|DFAM:marine!不懂DFAM,别说你会做水下动物分割!
论文地址:http://arxiv.org/pdf/2404.04996v1代码地址:https://github.com/Drchip61/Dual_SAM关注UPCV缝合怪,分享最计算机视觉新即插即用模块,并提供配套的论文资料与代码。https://space.bilibili.com/473764881摘要本研究提出了一种新颖的特征学习框架,名为**Dual-SAM,用于高性能的海洋动物分割
- Python与Dlib库实现人脸技术实战
西域情歌
本文还有配套的精品资源,点击获取简介:本项目详细说明了如何使用Python结合Dlib库实现人脸检测、识别、数量检测和距离检测。利用Dlib提供的机器学习算法和计算机视觉功能,包括HOG特征检测、级联分类器、面部特征向量模型和关键点预测等,项目能够快速准确地在图像中检测和识别人脸。此外,还介绍了如何统计图像中的人脸数量以及如何计算人脸之间的距离。通过实际代码资源,开发者能够掌握实时人脸技术的应用,
- 视觉表征和多模态融合
一只齐刘海的猫
语言模型
视觉表征和多模态融合是当前人工智能领域的研究热点,特别是在计算机视觉和自然语言处理的交叉领域。视觉表征是指将图像或视频信息转化为模型可以处理的向量形式,而多模态融合则是将不同类型的数据(如视觉、文本、音频等)进行整合,以实现更全面、准确的信息理解和处理。视觉表征(VisualRepresentation)目的:将图像或视频数据转化为深度学习模型可以理解的特征向量。方法:卷积神经网络(CNN):传
- 【LLM论文阅读】
一只齐刘海的猫
论文阅读
LLM论文阅读论文重点论文链接RopeRoFormer:EnhancedTransformerwithRotaryPositionEmbeddingRoPE论文阅读YarnUnderstandingYaRN:ExtendingContextWindowofLLMs论文YaRN笔记T5ExploringtheLimitsofTransferLearningwithaUnifiedText-to-Te
- 从0到1掌握OpenCV!Python图像处理实战全解析(附代码+案例)
小张在编程
Python学习opencvpython图像处理
引言你有没有想过,手机里的美颜滤镜如何精准识别五官?监控摄像头如何在人流中锁定可疑目标?医学影像软件如何从CT片中快速标注病灶?这些“神奇操作”的背后,往往藏着一个低调的“图像处理神器”——OpenCV。作为Python生态中最受欢迎的计算机视觉库,它用一行行代码将抽象的像素点变成可操作的“数字画布”。今天,我们就从最基础的图像读写开始,手把手带你解锁OpenCV的“十八般武艺”,从图像处理小白变
- 目标检测在国防和政府的应用实例
MzKyle
计算机视觉目标检测人工智能计算机视觉
一、目标检测技术概述目标检测是计算机视觉的核心任务,通过算法对图像/视频中的物体进行识别与定位,当前主流技术包括:经典算法:YOLO系列(实时性强)、FasterR-CNN(精度高)、SSD(平衡速度与精度)技术升级:结合深度学习(CNN、Transformer)、多模态融合(视觉+红外+雷达)、边缘计算实时处理二、国防领域核心应用实例(一)军事侦察与监控系统无人机侦察与目标识别应用场景:战术无人
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s