PCL点云库——欧式聚类分割

欧式聚类分割


  pcl::EuclideanClusterExtraction是基于欧式距离提取集群的方法,仅依据距离,将小于距离阈值的点云作为一个集群。
  具体的实现方法大致是:
  (1) 找到空间中某点p10,由kdTree找到离他最近的n个点,判断这n个点到p的距离;
  (2) 将距离小于阈值r的点p12、p13、p14…放在类Q里;
  (3) 在 Q\p10 里找到一点p12,重复1;
  (4) 在 Q\p10、p12 找到一点,重复1,找到p22、p23、p24…全部放进Q里;
  (5) 当 Q 再也不能有新点加入了,则完成搜索了。

//****欧式聚类分割****//

#include 
#include 
#include 
#include 
#include //CString头文件
using namespace std;

int 
main (int argc, char** argv)
{
  // 读取点云数据
  pcl::PCDReader reader;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  reader.read ("test.pcd", *cloud);

  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud(cloud);

  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;//创建欧式聚类分割对象
  ec.setClusterTolerance(3); //设置近邻搜索的搜索半径
  ec.setMinClusterSize(5000); //设置最小聚类尺寸
  ec.setMaxClusterSize(100000);
  ec.setSearchMethod(tree);
  ec.setInputCloud(cloud);
  ec.extract(cluster_indices);

  std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> Eucluextra; //用于储存欧式分割后的点云
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
	  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
		cloud_cluster->points.push_back(cloud->points[*pit]);
    cloud_cluster->width = cloud_cluster->points.size ();
    cloud_cluster->height = 1;
    cloud_cluster->is_dense = true;
	Eucluextra.push_back(cloud_cluster);
  }

  //可视化
  pcl::visualization::PCLVisualizer viewer("PCLVisualizer");
  viewer.initCameraParameters();

  int v1(0);
  viewer.createViewPort(0.0, 0.0, 0.5, 1.0, v1);
  viewer.setBackgroundColor(128.0 / 255.0, 138.0 / 255.0, 135.0 / 255.0, v1);
  viewer.addText("Cloud before segmenting", 10, 10, "v1 test", v1);
  viewer.addPointCloud<pcl::PointXYZ>(cloud, "cloud", v1);

  int v2(0);
  viewer.createViewPort(0.5, 0.0, 1.0, 1.0, v2);
  viewer.setBackgroundColor(128.0 / 255.0, 138.0 / 255.0, 135.0 / 255.0, v2);
  viewer.addText("Cloud after segmenting", 10, 10, "v2 test", v2);
  for (int i = 0; i < Eucluextra.size(); i++)
  {
	  CString cstr;
	  cstr.Format(_T("cloud_segmented%d"), i);
	  cstr += _T(".pcd");
	  string str_filename = CStringA(cstr);
	  //显示分割得到的各片点云 
	  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> color(Eucluextra[i], 255 * (1 - i)*(2 - i) / 2, 255 * i*(2 - i), 255 * i*(i - 1) / 2);
	  viewer.addPointCloud(Eucluextra[i], color, str_filename, v2);
  }

  while (!viewer.wasStopped())
  { 
	  viewer.spinOnce(100);
	  boost::this_thread::sleep(boost::posix_time::microseconds(100000));
  }
  return (0);
}

PCL点云库——欧式聚类分割_第1张图片

图1 分割实例一

以下为麦粒的分割实例。

//****欧式聚类分割****//

#include //点云pcd输入输出头文件
#include //欧式聚类分割头文件
#include //点云可视化头文件
#include 
#include //CString头文件
//#include 
using namespace std;
clock_t start_time, end_time;

int
main(int argc, char** argv)
{
	// 读取点云数据
	pcl::PCDReader reader;//pcd文件读取对象
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
	reader.read("wheat_data.pcd", *cloud);//读取点云文件

	start_time = clock();//程序开始计时
	pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);//kd树对象
	tree->setInputCloud(cloud);

	std::vector<pcl::PointIndices> cluster_indices;
	pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;//创建欧式聚类分割对象
	ec.setClusterTolerance(0.2); //设置近邻搜索的搜索半径
	ec.setMinClusterSize(100); //设置最小聚类尺寸
	ec.setMaxClusterSize(100000); //设置最大聚类尺寸
	ec.setSearchMethod(tree);
	ec.setInputCloud(cloud);
	ec.extract(cluster_indices);

	std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> Eucluextra; //用于储存欧式分割后的点云
	for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
	{
		pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
		for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); pit++)
			cloud_cluster->points.push_back(cloud->points[*pit]);
		cloud_cluster->width = cloud_cluster->points.size();
		cloud_cluster->height = 1;
		cloud_cluster->is_dense = true;
		Eucluextra.push_back(cloud_cluster);
	}
	end_time = clock();//程序结束用时
	double endtime = (double)(end_time - start_time) / CLOCKS_PER_SEC;
	cout << "Total time:" << endtime << "s" << endl;//s为单位
	cout << "Total time:" << endtime * 1000 << "ms" << endl;//ms为单位

	//可视化
	pcl::visualization::PCLVisualizer viewer("PCLVisualizer");
	viewer.initCameraParameters();

	int v1(0);//窗口一
	viewer.createViewPort(0.0, 0.0, 0.5, 1.0, v1);
	viewer.setBackgroundColor(128.0 / 255.0, 138.0 / 255.0, 135.0 / 255.0, v1);
	viewer.addText("Cloud before segmenting", 10, 10, "v1 test", v1);
	viewer.addPointCloud<pcl::PointXYZ>(cloud, "cloud", v1);

	int v2(0);//窗口二
	viewer.createViewPort(0.5, 0.0, 1.0, 1.0, v2);
	viewer.setBackgroundColor(128.0 / 255.0, 138.0 / 255.0, 135.0 / 255.0, v2);
	viewer.addText("Cloud after segmenting", 10, 10, "v2 test", v2);
	for (int i = 0; i < Eucluextra.size(); i++)
	{
		CString cstr;
		cstr.Format(_T("cloud_segmented_%d.pcd"), i);
		string str_filename = CStringA(cstr);
		pcl::io::savePCDFile(str_filename, *Eucluextra[i]);//保存点云
		//显示分割得到的各片点云 
		pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> color(Eucluextra[i], 255 * (1 - i)*(2 - i)*(3 - i), 255 * i*(2 - i) * 2 * (0 - i), 255 * i*(i - 1)*(4 - i));
		viewer.addPointCloud(Eucluextra[i], color, str_filename, v2);
	}

	ofstream fout;//文件流
	fout.open("wheat_data.txt");
	int i = 0;
	while (i < cloud->size())
	{
		int index = 0;
		for (int j = 0; j < Eucluextra.size(); j++)
		{
			for (int k = 0; k < Eucluextra[j]->size(); k++)
			{
				if (cloud->points[i].x == Eucluextra[j]->points[k].x&&cloud->points[i].y == Eucluextra[j]->points[k].y&&cloud->points[i].z == Eucluextra[j]->points[k].z)
					index = j;//获取每个点属于分割出的哪个麦粒
			}
		}
		//每个数保存为5位小数
		fout << setiosflags(ios::fixed) << setprecision(5) << cloud->points[i].x << " " 
			<< setiosflags(ios::fixed) << setprecision(5) << cloud->points[i].y << " " 
			<< setiosflags(ios::fixed) << setprecision(5) << cloud->points[i].z << " " 
			<< index << endl;
		i++;
	}
	fout.close();

	//可视化窗口停留
	while (!viewer.wasStopped())
	{
		viewer.spinOnce(100);
		boost::this_thread::sleep(boost::posix_time::microseconds(100000));
	}
	return (0);
}
图2 分割实例二——麦粒分割

你可能感兴趣的:(PCL,点云,分割,聚类,算法,数据挖掘)