AI实战第八课 CV2图片去水印

关于OpenCV简介

       OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。 OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。 

       在计算机视觉项目的开发中,OpenCV作为较大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux/Windows/Mac等操作系统上,能够快速的实现一些图像处理和识别的任务。此外,OpenCV还提供了Java、python、cuda等的使用接口、机器学习的基础算法调用,从而使得图像处理和图像分析变得更加易于上手,让开发人员更多的精力花在算法的设计上。

安装CV2

pip install opencv-python

图片修复程序-可用于水印去除

在现实的生活中,我们可能会遇到一些美好的或是珍贵的图片被噪声干扰,比如旧照片的折痕,比如镜头上的灰尘或污渍,更或者是某些我们想为我所用但有讨厌水印,那么有没有一种办法可以消除这些噪声呢?

答案是肯定的,依然是被我们用了无数次的OpenCV这款优秀的框架。

OpenCV

目前,OpenCV逐步成为一个通用的基础研究和产品开发平台。OpenCV这一名称包含了Open和 Computer Vision两者的意思。实际上,Open指Open Source(开源,即开放源代码),Computer Vision则指计算机视觉。OpenCV的发展对软件的开发具有重要影响。

AI实战第八课 CV2图片去水印_第1张图片

图片修复原理

那OpenCV究竟是怎么实现的,简单的来说就是开发者标定噪声的特征,在使用噪声周围的颜色特征推理出应该修复的图片的颜色,从而实现图片修复的。

程序实现解析

  • 标定噪声的特征,使用cv2.inRange二值化标识噪声对图片进行二值化处理,具体代码:cv2.inRange(img, np.array([240, 240, 240]), np.array([255, 255, 255])),把[240, 240, 240]~[255, 255, 255]以外的颜色处理为0;
  • 使用OpenCV的dilate方法,扩展特征的区域,优化图片处理效果;
  • 使用inpaint方法,把噪声的mask作为参数,推理并修复图片;
#coding=utf-8

import cv2
import numpy as np

path = "20186491751170.jpg"
img = cv2.imread(path)
height , width , depth = img.shape[0 : 3]
print(height , width , depth)

thresh = cv2.inRange(img , np.array([240,240,240]) , np.array([255,255,255]))

#创建形状和尺寸的结构元素
kernel = np.ones(( 3 , 3 ) , np.uint8)

#扩张待修复区域
hi_mask = cv2.dilate(thresh, kernel, iterations=1)
specular = cv2.inpaint(img, hi_mask, 5, flags=cv2.INPAINT_TELEA)

#修复前图片窗口
cv2.namedWindow("Image", 0)
cv2.resizeWindow("Image", int(width / 2), int(height / 2))
cv2.imshow("Image", img)


#修复后图片窗口
cv2.namedWindow("newImage", 0)
cv2.resizeWindow("newImage", int(width / 2), int(height / 2))
cv2.imshow("newImage", specular)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

你可能感兴趣的:(跟老王学AI,python,机器学习)