- JNA实现Java调用C++
Java陌路
技术应用javac++jni
JNA实现Java调用C++场景JNA介绍如何使用JNAJNA的方法映射基本数据类型指针映射结构体映射JNA总结场景公司有一个C++的SDK需要调用,本人是Java开发,所以使用JNA调用C++,在这里分享一些JNA的使用经验供大家参考JNA介绍JNA是JNI的封装升级,但是JNI的使用比较繁琐,有兴趣的可以自行了解JNA官网地址:链接地址如何使用JNA集成JNA包net.java.dev.jna
- 技术硬核:突出FP8、3倍速度、90%成本暴降等技术参数,强化可信度
guzhoumingyue
AIpython
DeepSeek近期开源项目详细分析1.FlashMLA:大模型推理效率革命技术特点:首个开源项目FlashMLA是针对英伟达Hopper架构GPU(如H800)优化的高效多头潜在注意力(MLA)解码内核,支持可变长度序列的动态处理,显著降低显存占用并提升推理速度。在H800上可实现每秒3000GB的数据吞吐和580万亿次浮点运算(TFLOPS),接近硬件性能极限。行业影响:通过压缩KV矩阵和优化
- 【例1109】create boundaries 创建边界
王牌飞行员_里海
NX二次开发经典案例里海NX二次开发3000例NX二次开发UG二次开发嵌入式硬件C++
文章作者:里海来源网站:NX二次开发官方案例专栏简介《createboundaries根据代码,将“createboundaries”翻译为:创建边界》这是一个NX二次开发官方小例子,下面是代码和解析。相较于混乱、未经验证的代码,官方案例能够确保开发者获得准确的开发方法,这些官方示例代码经过严格测试,能够正确地反映出NX软件的功能和API使用方式,有助于开发者系统地掌握NX二次开发技能,提高开发质
- 关于 Python 的 import,你了解多少?
Python_魔力猿
python开发语言
了解大厂经验拥有和大厂相匹配的技术等一、前言写过Python的猿猿肯定对import不陌生。但Python在importmodule时会执行相关的代码,你知道吗?Pythonimport还有其他的什么特性呢?通过这一篇文章,彻底掌握Pythonimport二、Pythonimport详解2.1Pythonimport介绍在Python中,import是用于导入模块和模块中定义的变量、函数、类等内容
- python中from import 所有内容都执行_彻底搞懂Python 中的 import 与 from import
沃特JS
python中fromimport所有内容都执行
你好,我是谢乾坤,前网易高级数据挖掘工程师。现任微软最有价值专家(Python方向),有6年Python开发经验,善于解决各种业务场景下的棘手问题,进一步提升代码质量。对不少Python初学者来说,Python导入其他模块的方式让他们很难理解。什么时候用importxxx?什么时候用fromxxximportyyy?什么时候用fromxxx.yyyimportzzz?什么时候用fromxxximp
- Python算法学习: 2020年蓝桥杯省赛模拟赛-Python题解
普通Gopher
Python算法
目录文章目录目录填空题1填空题2填空题3填空题4编程题1凯撒密码加密编程题2反倍数编程题3摆动序列编程题4螺旋矩阵编程题5村庄通电编程题6小明植树填空题1问题描述一个包含有2019个结点的无向连通图,最少包含多少条边?答案提交这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。答案:2018填空题2问题描述将LANQIAO中
- 聊一聊提升测试用例覆盖率需要从哪几方面入手?
Feng.Lee
漫谈测试测试用例服务器运维
目录一、需求覆盖:确保无遗漏二、代码覆盖:工具辅助优化三、路径覆盖:逻辑深度遍历四、边界值覆盖:防御性测试设计五、异常场景覆盖:模拟真实故障六、兼容性覆盖:全环境验证七、性能覆盖:压力与稳定性八、历史缺陷覆盖:经验驱动九、测试数据覆盖:多样性输入十、自动化覆盖:高效执行十一、评审与优化:持续改进十二、工具与技术创新十三、风险驱动测试:聚焦关键点十四、持续追踪与反馈提升测试用例的覆盖率,可以从测试用
- 分布式爬虫场景下代理IP负载均衡的实战优化指南
http
在数据采集项目中,分布式节点搭配代理IP的组合方案已成为行业标配。但随着业务规模扩大,许多开发者发现,单纯堆砌代理IP资源并不能有效提升爬虫效率——关键在于如何让数百个代理IP在分布式节点间实现智能调度。本文将从实际运维经验出发,分享可落地的负载均衡优化方案。一、节点健康检查机制搭建代理IP的有效性直接决定采集成功率。建议每个分布式节点配置独立检测模块,在发起请求前对代理IP进行三层验证:基础连通
- DeepSeep开源周,第三天:DeepGEMM是啥?
程序员差不多先生
pytorch
DeepGEMM是Deepseek开源的一个高性能矩阵乘法优化库,专为深度学习场景设计。矩阵乘法(GEMM)是深度学习模型的核心运算(如全连接层、卷积层等),其性能直接影响训练和推理效率。DeepGEMM通过算法优化、硬件指令集加速和并行计算技术,显著提升计算速度,适用于GPU、CPU等硬件平台。对开发者的用处性能提升优化计算密集型任务(如LLM训练/推理),降低延迟,提升吞吐量。支持混合精度计算
- Kubernetes (K8S) 高效使用技巧与实践指南
挣扎与觉醒中的技术人
kubernetes容器云原生网络
Kubernetes(K8S)作为容器编排领域的核心工具,其灵活性和复杂性并存。本文结合实战经验,从运维效率提升、生产环境避坑、核心功能应用等维度,总结高频使用技巧与最佳实践,分享如何快速掌握K8S。一、kubectl高效操作技巧1.自动补全与上下文切换kubectl是操作K8S的核心命令行工具,通过以下配置可大幅提升操作效率:#Bash自动补全source快速切换目标集群。2.YAML模板生成与
- IPEX-LLM: 英特尔硬件大语言模型加速库部署
Felix_bin
语言模型人工智能自然语言处理
IPEX-LLM:英特尔硬件大语言模型加速库部署大语言模型的本地部署正成为一个热门话题。本指南将帮助你掌握如何使用IPEX-LLM(IntelPyTorchExtensionforLargeLanguageModels)在英特尔硬件上实现最优化的模型部署。无论你是刚开始接触还是已经有一定经验,这份指南都能满足你的需求。IPEX-LLM的优势IPEX-LLM是英特尔基于PyTorch开发的专业优化库
- 电子科大考研经验分享
bugmaker.
杂谈机器学习
最近有好多学弟学妹问我考研相关的问题,我大致总结了一下,无非就是考研和就业相关的问题。趁着我还没忘记,写一篇博客跟大家分享一下我的考研经历,给大家做个参考。先说考研选择大于努力选择大于努力,这是我考完研之后最大的感受。举个栗子:今年中科大的软件,400多分的人有400多个,这意味着如果你初试成绩不在400以上,上岸的机会就很渺茫了,反观中山大学的人工智能,320多分就排到了第二名。所以正确评估自己
- 23西安电子科技大学 西电 833计算机专业基础综合 834 数据结构 计算机组成原理 考研参考书及学长学姐全程复习经验分享
西电研梦
考研数据结构经验分享
23西安电子科技大学西电833计算机专业基础综合834数据结构计算机组成原理考研参考书及学长学姐全程复习经验分享我觉得考研本身并不算难,难得在于给自己一个可以一直坚持下去的动力,所以第一个问题是我们要清楚为什么要考研?我并不能直接告诉你考研好还是工作好?但所有考研的人都需要把信息进行收集:1.你希望考的那个专业前景怎么样?2.各个学校的这个专业怎么样,业内是否认可,能给你提供什么资源?3.各个学校
- 西安电子科技大学软件工程考研上岸经验分享
西电研梦
考研软件工程经验分享
一、择校和定专业大家在择校和定专业的时候一定要考虑以下几点:1、是否是自己感兴趣并想要从事的专业。如果对本专业并不感兴趣或者考虑就业前景不太好就可以根据自己的实力选择跨考,一定要理智选择;2、如果是跨考的话难度自己是否能够承受。如果想跨考的专业与本专业跨度太大可能学起来会比较吃力,有些学校会排挤跨考生,这些都是需要留意的;择校原因:我的本专业是计算机科学与技术的,在考研的时候并不打算跨考,所以对于
- 西安电子科技大学电子与通信工程考研经验分享
西电研梦
考研经验分享
在考研择校与考研专业上,我是非常纠结的。我是有名校情结的,我想考一个名声非常响的学校。我当时的第一选择是北京理工大学,因为它位于首都嘛,位置好,学科实力也强,她是我非常非常向往的。然后我上网查了相关的资料,我发现考北京理工学校是一个非常有风险,非常有困难的事情。偶然间,我在帖子上看到了学长考西安电子科技大学的经验,我怀着一些不确定的心情去查了相关的资料,最后我发现西电的学科水平非常不错,然后我就选
- 西安电子科技大学微电子学院801考研经验分享
西电研梦
考研经验分享概率论
给大家分享一下我去年复习到这个时候的安排吧,因为我去年数学和专业课考得还是很好的,而政治和英语考得一般,所以这里着重介绍一下数学和专业课。801对应的专业课资料一定要买,真题、模拟试卷一定要买。数学:首先正常情况下大家应该6月初或者6月中旬结束数学的基础复习,转而开始刷错题,巩固前面所学的的知识点。因为数一的知识点确实太多了,如果不回顾很容易忘,而回头去做错题也恰好能完整你对知识的掌握程度,根据这
- 计算机科学与技术毕业论文选题【精选】
坷拉博士
毕业论文javaservlet服务器
论文题目的研究创新一般来说有三种:研究内容创新、研究方法创新和研究结果创新,满足这三种的任何一种都算是创新。我是资深论文从业者,每年不包括修改的论文都有几十篇,所以这方面经验我是比较丰富的。就经验来看,导师审核并不会在乎创新,甚至有时候你的论文越创新,被毙的风险越大,关于这一点我在之前的文章中系统分析过。此外,如果导师非要很新的题目,可以加一些限定范围的前缀之类的,这种最容易。但是对你自己来说要清
- 主成成分分析——MATLAB实现
前排观众_
课程分享matlab开发语言经验分享机器学习
主代码:%下面为主要成分分析的程序clear;clc;loadA;%要分析的数据A_aver=mean(A);A_bzc=std(A,0,1);A=(A-A_aver)./A_bzc;%将矩阵A标准化A_xfc=cov(A);%求出A的协方差矩阵[COEFF,latent,explained]=pcacov(A_xfc);zcf=find(latent>1)';%找到特征值大于1的成分以作为我们的
- 最全数仓实践:总线矩阵设计_数仓总线矩阵(2)
2401_84170391
程序员矩阵大数据spark
所以,总线矩阵和一致性维度、一致性事实共同组成了Kimball的多维体系结构基础。在这种多维体系结构(MD)的数据仓库架构中,主导的思想便是分步建立数据仓库,并由数据集市组合成企业的数据仓库。但是,在建立第一个数据集市前,架构师首先要做的就是设计出在整个企业内具有统一解释的标准化的维度和事实,即一致性维度和一致性事实,而开发团队必须严格的按照这个体系结构来进行数据集市的迭代开发。如果我们在建立数据
- 电子科技大学考研复习经验分享
请讓我停止这种追逐
考研经验分享
电子科技大学考研复习经验分享本人情况:本科就读于电科软院,24年2月开始了解考研,24年3月开始数学,9月决定考本院(开始全天候图书馆学习)并开始专业课学习,11月底开始政治学习,最后初试结果如下:昨日考研初试分数公布,因此写此贴分享一下本人数一及专业课备考的一些拙见关于数学一数学一是考研过程中花费时间最多、最重要、最难的一科个人安排及反思:①3-6月(基础阶段):张宇的基础三十讲②7-8月(巩固
- 直驱永磁伺服运动系统的优化架构与代理模型解析在高动态运动控制中的应用【matlab/simulink】
坷拉博士
架构matlabjava
✅博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅具体问题可以私信或扫描文章底部二维码。直驱永磁伺服运动系统因其卓越的性能、精度和可靠性,取代了许多具有机械传动结构的传统伺服系统。随着对直驱伺服系统性能要求的提高,且多轴直驱运动系统失去了机械传动结构的解耦特性,直驱永磁伺服运动系统中各部分(如直驱电机、运动轨迹、驱动器和连杆)之间的耦合关系
- 【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算
猿享天开
人工智能基础知识学习线性代数人工智能学习矩阵及其运算
矩阵及其运算:人工智能入门数学基础的深入解读引言线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经网络、图像处理、自然语言处理等领域的重要工具。本文将深入探讨矩阵的基本概念、性质及其运算,通过详细的数学公式、推导过程和代码示例,帮助读者更好地理解矩阵在AI中的应用。第一章:矩阵的基本概念1.1矩阵的定义
- 基于SpringBoot+mybatisplus+vueJS的高校选课系统设计和实现
华子w908925859
springbootvue.js后端
博主介绍:硕士研究生,专注于信息化技术领域开发与管理,会使用java、标准c/c++等开发语言,以及毕业项目实战✌从事基于javaBS架构、CS架构、c/c++编程工作近16年,拥有近12年的管理工作经验,拥有较丰富的技术架构思想、较扎实的技术功底和资深的项目管理经验。先后担任过技术总监、部门经理、项目经理、开发组长、java高级工程师及c++工程师等职位,在工业互联网、国家标识解析体系、物联网、
- 第5关:线性代数
-阿呆-
#numpy数组的高级操作线性代数矩阵python
任务描述本关任务:编写一个能求解线性方程的函数。相关知识为了完成本关任务,你需要掌握:如何使用numpy进行矩阵运算点积和matmul的区别。numpy的线性代数线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分,一般我们使用*对两个二维数组相乘得到的是一个元素级的积,而不是一个矩阵点积。因此numpy提供了线性代数函数库linalg,该库包含了线性代数所需的所有
- 力扣 3248. 矩阵中的蛇(Java实现)
Dr_Si
leetcode算法职场和发展
题目分析给定一个值n,既是矩阵边长还是操作次数。蛇可以进行上下左右操作,问操作完毕后的位置思路分析首先设置初始位置=0,当读取操作时进行对应的操作。由示例可以看出,UP操作就是i-=n;RIGHT操作就是i+=1;DOWN操作就是i+=n;LEFT操作就是i-=1.代码classSolution{publicintfinalPositionOfSnake(intn,Listcommands){in
- 深度学习笔记线性代数方面,记录一些每日学习到的知识
肆——
人工智能深度学习python
记录一些每日学习到的新知识:torch:Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库jupyter:JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。只有一个轴的张量,形状只有一个元素torch.a
- 班翎流程平台 | 告别流程版本管理困扰
版本管理
概要介绍为保证企业业务流程稳定,确保业务流程的连续性和稳定性,支持业务流程持续优化,班翎提供高效的版本管理方案,支持流程即时生效、定时生效和实时生效。帮助客户有效管理流程、优化流程、满足企业合规要求。主要作用如下:1.支持业务流程持续优化改进业务流程时,可创建新版本流程进行试验,同时记录版本优化内容,形成优化轨迹,总结经验,为后续改进提供参考。例如:一家电商企业想要优化订单处理流程,通过流程版本管
- 稀疏矩阵与稠密矩阵的优缺点,散列索引与顺序索引的区别,聚集与非聚集索引
tacit-lxs
索引数据结构mysql
1.稀疏索引和稠密索引稀疏索引在稀疏索引中,不会为每个搜索关键字创建索引记录。此处的索引记录包含搜索键和指向磁盘上数据的实际指针。要搜索记录,我们首先按索引记录进行操作,然后到达数据的实际位置。如果我们要寻找的数据不是我们通过遵循索引直接到达的位置,那么系统将开始顺序搜索,直到找到所需的数据为止。稠密索引在密集索引中,数据库中的每个搜索键值都有一个索引记录。这样可以加快搜索速度,但需要更多空间来存
- 数据仓库面试题集锦(附答案和数仓知识体系),面试必过
m0_60635001
2024年程序员学习数据仓库面试spark
3、如何构建数据仓库?数据仓库模型的选择是灵活的,不局限与某种模型方法;数据仓库数据是灵活的,以实际需求场景为导向;数仓设计要兼顾灵活性、可扩展性、要考虑技术可靠性和实现成本1)调研:业务调研、需求调研、数据调研2)划分主题域:通过业务调研、需求调研、数据调研最终确定主题域3)构建总线矩阵、维度建模总线矩阵:把总线架构列表形成矩阵形式,行表示业务处理过程,即事实,列表示一致性的维度,在交叉点上打上
- 01 目录-具身智能学习规划
天机️灵韵
具身智能人工智能具身智能机器人生物信息学
具身智能(EmbodiedIntelligence)强调智能体通过身体与环境的动态交互实现学习和决策,是人工智能、机器人学、认知科学和神经科学交叉的前沿领域。其核心在于打破传统AI的“离身认知”,将智能与物理实体、感知-运动系统紧密结合。以下是具身智能学习规划的框架:一、基础理论储备数学与编程基础数学:概率统计、线性代数、微积分、优化理论、微分几何(运动规划)。编程:Python(主流工具链)、C
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓