torch.Tensor的4种乘法

torch.Tensor的4种乘法

转载至

torch.Tensor有4种常见的乘法:*, torch.mul, torch.mm, torch.matmul. 本文抛砖引玉,简单叙述一下这4种乘法的区别,具体使用还是要参照官方文档。

点乘

a与b做*乘法,原则是如果a与b的size不同,则以某种方式将a或b进行复制,使得复制后的a和b的size相同,然后再将a和b做element-wise的乘法

下面以*标量和*一维向量为例展示上述过程。

* 标量

Tensor与标量k做*乘法的结果是Tensor的每个元素乘以k(相当于把k复制成与lhs大小相同,元素全为k的Tensor).

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> a * 2
tensor([[2., 2., 2., 2.],
        [2., 2., 2., 2.],
        [2., 2., 2., 2.]])

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

* 一维向量

Tensor与行向量做*乘法的结果是每列乘以行向量对应列的值(相当于把行向量的行复制,成为与lhs维度相同的Tensor). 注意此时要求Tensor的列数与行向量的列数相等。

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3,4])
>>> b
tensor([1., 2., 3., 4.])
>>> a * b
tensor([[1., 2., 3., 4.],
        [1., 2., 3., 4.],
        [1., 2., 3., 4.]])

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

Tensor与列向量做*乘法的结果是每行乘以列向量对应行的值(相当于把列向量的列复制,成为与lhs维度相同的Tensor). 注意此时要求Tensor的行数与列向量的行数相等。

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3]).reshape((3,1))
>>> b
tensor([[1.],
        [2.],
        [3.]])
>>> a * b
tensor([[1., 1., 1., 1.],
        [2., 2., 2., 2.],
        [3., 3., 3., 3.]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

* 矩阵

经Arsmart在评论区提醒,增补一个矩阵 * 矩阵的例子,感谢Arsmart的热心评论!
如果两个二维矩阵A与B做点积A * B,则要求A与B的维度完全相同,即A的行数=B的行数,A的列数=B的列数

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> a * a
tensor([[1, 4],
        [4, 9]])

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4

broadcast

点积是broadcast的。broadcast是torch的一个概念,简单理解就是在一定的规则下允许高维Tensor和低维Tensor之间的运算。broadcast的概念稍显复杂,在此不做展开,可以参考官方文档关于broadcast的介绍. 在torch.matmul里会有关于broadcast的应用的一个简单的例子。
这里举一个点积broadcast的例子。在例子中,a是二维Tensor,b是三维Tensor,但是a的维度与b的后两位相同,那么a和b仍然可以做点积,点积结果是一个和b维度一样的三维Tensor,运算规则是:若c = a * b, 则c[i,*,*] = a * b[i, *, *],即沿着b的第0维做二维Tensor点积,或者可以理解为运算前将a沿着b的第0维也进行了expand操作,即a = a.expand(b.size()); a * b

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> b = torch.tensor([[[1,2],[2,3]],[[-1,-2],[-2,-3]]])
>>> a * b
tensor([[[ 1,  4],
         [ 4,  9]],
    [[-1, -4],
     [-4, -9]]])

>>> b * a
tensor([[[ 1, 4],
[ 4, 9]],

    [[-1, -4],
     [-4, -9]]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

其实,上面提到的二维Tensor点积标量、二维Tensor点积行向量,都是发生在高维向量和低维向量之间的,也可以看作是broadcast.

torch.mul

官方文档关于torch.mul的介绍. 用法与*乘法相同,也是element-wise的乘法,也是支持broadcast的。

下面是几个torch.mul的例子.

乘标量

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> a * 2
tensor([[2., 2., 2., 2.],
        [2., 2., 2., 2.],
        [2., 2., 2., 2.]])

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

乘行向量

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3,4])
>>> b
tensor([1., 2., 3., 4.])
>>> torch.mul(a, b)
tensor([[1., 2., 3., 4.],
        [1., 2., 3., 4.],
        [1., 2., 3., 4.]])

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

乘列向量

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3]).reshape((3,1))
>>> b
tensor([[1.],
        [2.],
        [3.]])
>>> torch.mul(a, b)
tensor([[1., 1., 1., 1.],
        [2., 2., 2., 2.],
        [3., 3., 3., 3.]])

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

乘矩阵

例1:二维矩阵 mul 二维矩阵

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> torch.mul(a,a)
tensor([[1, 4],
        [4, 9]])

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4

例2:二维矩阵 mul 三维矩阵(broadcast)

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> b = torch.tensor([[[1,2],[2,3]],[[-1,-2],[-2,-3]]])
>>> torch.mul(a,b)
tensor([[[ 1,  4],
         [ 4,  9]],
    [[-1, -4],
     [-4, -9]]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

torch.mm

官方文档关于torch.mm的介绍. 数学里的矩阵乘法,要求两个Tensor的维度满足矩阵乘法的要求.

例子:

>>> a = torch.ones(3,4)
>>> b = torch.ones(4,2)
>>> torch.mm(a, b)
tensor([[4., 4.],
        [4., 4.],
        [4., 4.]])

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

torch.matmul

官方文档关于torch.matmul的介绍. torch.mm的broadcast版本.

例子:

>>> a = torch.ones(3,4)
>>> b = torch.ones(5,4,2)
>>> torch.matmul(a, b)
tensor([[[4., 4.],
         [4., 4.],
         [4., 4.]],
    [[4., 4.],
     [4., 4.],
     [4., 4.]],

    [[4., 4.],
     [4., 4.],
     [4., 4.]],

    [[4., 4.],
     [4., 4.],
     [4., 4.]],

    [[4., 4.],
     [4., 4.],
     [4., 4.]]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

同样的a和b,使用torch.mm相乘会报错

>>> torch.mm(a, b)
Traceback (most recent call last):
  File "", line 1, in <module>
RuntimeError: matrices expected, got 2D, 3D tensors at /pytorch/aten/src/TH/generic/THTensorMath.cpp:2065

你可能感兴趣的:(python数据分析与处理,python)