上一篇我们通过kibana的可视化界面,对es的索引以及文档的常用操作做了毕竟详细的总结,本篇将介绍如何使用java完成对es的操作,这也是实际开发中将要涉及到的。
目前,开发中使用java操作es,不管是框架集成,还是纯粹的使用es的api,主要通过下面两种方式:
rest-api,主流的像 RestHighLevelClient ;
与springboot集成时的jpa操作,主要是 ElasticsearchRepository 相关的api;
上面两种模式的api在开发中都可以方便的使用,相比之下,RestHighLevelClient相关的api灵活性更高,而ElasticsearchRepository 底层做了较多的封装,学习和使用的成本更低,上手更快。
接下来将对上面的两种操作模式做一个详细的总结,本篇所述的es基于7.6.2版本,配合的kibana也为7.6.2版本。
导入核心依赖,主要是es的rest依赖,其他的可以根据自己的需要导入;
org.apache.logging.log4j
log4j-api
2.11.2
org.apache.logging.log4j
log4j-core
2.11.2
org.apache.logging.log4j
log4j-core
2.8.2
org.apache.logging.log4j
log4j-jcl
2.11.2
commons-logging
commons-logging
1.2
org.elasticsearch
elasticsearch
7.6.2
org.elasticsearch.client
elasticsearch-rest-high-level-client
7.6.2
com.fasterxml.jackson.core
jackson-databind
2.9.9
junit
junit
4.12
为了确保后续的所有实验能够正常进行,建议先通过下面的程序测试下是否能够连接es服务;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import java.io.IOException;
public class EsClientTest {
public static void main(String[] args) throws IOException {
RestHighLevelClient esClient = new RestHighLevelClient(
RestClient.builder(new HttpHost("IP",9200,"http"))
);
System.out.println("success");
esClient.close();
}
}
运行上面的代码,出现下面的效果说明连接成功
为了减少连接相关的编码,我们将es的client提出到全局的静态变量中,其他方法中就可以直接引用了
public static RestHighLevelClient esClient;
static {
esClient = new RestHighLevelClient(
RestClient.builder(new HttpHost("IP", 9200, "http"))
);
}
/**
* 创建索引
* @throws IOException
*/
public static void createIndex() throws IOException {
CreateIndexRequest createIndexRequest = new CreateIndexRequest("user");
CreateIndexResponse indexResponse = esClient.indices().create(createIndexRequest, RequestOptions.DEFAULT);
boolean acknowledged = indexResponse.isAcknowledged();
System.out.println("索引创建状态:" + acknowledged);
}
main方法中调用方法即可
public static void main(String[] args) throws IOException {
System.out.println("connect success");
createIndex();
esClient.close();
}
运行main创建索引
通过kibana查询确认索引是否创建成功
/**
* 索引信息查询
* @throws IOException
*/
public static void getIndex() throws IOException {
GetIndexRequest getIndexRequest = new GetIndexRequest("user");
GetIndexResponse getIndexResponse = esClient.indices().get(getIndexRequest, RequestOptions.DEFAULT);
System.out.println(getIndexResponse.getAliases());
System.out.println(getIndexResponse.getMappings());
System.out.println(getIndexResponse.getSettings());
}
/**
* 删除索引
* @throws IOException
*/
public static void deleteIndex() throws IOException {
DeleteIndexRequest getIndexRequest = new DeleteIndexRequest("user");
AcknowledgedResponse delete = esClient.indices().delete(getIndexRequest, RequestOptions.DEFAULT);
System.out.println("索引删除状态:" + delete.isAcknowledged());
}
在实际开发过程中,对于文档的操作更为的频繁,接下来演示与es文档相关的操作api。
public static ObjectMapper objectMapper = new ObjectMapper();
public static RestHighLevelClient esClient;
static {
esClient = new RestHighLevelClient(
RestClient.builder(new HttpHost("IP", 9200, "http"))
);
}
用于测试使用的对象
public class User {
private String name;
private String sex;
private Integer age;
private Integer salary;
public User() {
}
public User(String name, String sex, Integer age, Integer salary) {
this.name = name;
this.sex = sex;
this.age = age;
this.salary = salary;
}
public Integer getSalary() {
return salary;
}
public void setSalary(Integer salary) {
this.salary = salary;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getSex() {
return sex;
}
public void setSex(String sex) {
this.sex = sex;
}
public Integer getAge() {
return age;
}
public void setAge(Integer age) {
this.age = age;
}
}
注意:实际开发中,user对象应该作为参数传入【可以基于此做进一步的封装】
/**
* 添加数据
* @throws Exception
*/
public static void add() throws Exception{
IndexRequest indexRequest = new IndexRequest();
indexRequest.index("user").id("1008");
User user = new User();
user.setName("孙二娘");
user.setAge(23);
user.setSex("女");
user.setSalary(7000);
String userData = objectMapper.writeValueAsString(user);
indexRequest.source(userData,XContentType.JSON);
//插入数据
IndexResponse response = esClient.index(indexRequest, RequestOptions.DEFAULT);
System.out.println(response.status());
System.out.println(response.getResult());
}
在main方法调用执行下该方法
public static void main(String[] args) throws Exception {
add();
esClient.close();
}
可以通过kibana查询检查下数据是否添加成功
/**
* 修改数据
* @throws Exception
*/
public static void update() throws Exception{
UpdateRequest request = new UpdateRequest();
request.index("user").id("1008");
request.doc(XContentType.JSON,"name","母夜叉");
//插入数据
UpdateResponse response = esClient.update(request, RequestOptions.DEFAULT);
System.out.println(response.getResult());
}
/**
* 删除
* @throws Exception
*/
public static void delete() throws Exception{
DeleteRequest request = new DeleteRequest();
request.index("user").id("1008");
//插入数据
DeleteResponse delete = esClient.delete(request, RequestOptions.DEFAULT);
System.out.println(delete.getResult());
}
有些情况下,单条插入效率太低,可以使用es的批量插入功能一次性添加多条数据
/**
* 批量添加
* @throws Exception
*/
public static void batchInsert() throws Exception{
BulkRequest bulkRequest = new BulkRequest();
User user1 = new User("关羽","男",33,5500);
String userData1 = objectMapper.writeValueAsString(user1);
IndexRequest indexRequest1 = new IndexRequest().index("user").id("1002").source(userData1, XContentType.JSON);
bulkRequest.add(indexRequest1);
User user2 = new User("黄忠","男",50,8000);
String userData2 = objectMapper.writeValueAsString(user2);
IndexRequest indexRequest2 = new IndexRequest().index("user").id("1003").source(userData2, XContentType.JSON);
bulkRequest.add(indexRequest2);
User user3 = new User("黄忠2","男",49,10000);
String userData3 = objectMapper.writeValueAsString(user3);
IndexRequest indexRequest3 = new IndexRequest().index("user").id("1004").source(userData3, XContentType.JSON);
bulkRequest.add(indexRequest3);
User user4 = new User("赵云","男",33,12000);
String userData4 = objectMapper.writeValueAsString(user4);
IndexRequest indexRequest4 = new IndexRequest().index("user").id("1005").source(userData4, XContentType.JSON);
bulkRequest.add(indexRequest4);
User user5 = new User("马超","男",38,20000);
String userData5 = objectMapper.writeValueAsString(user5);
IndexRequest indexRequest5 = new IndexRequest().index("user").id("1006").source(userData5, XContentType.JSON);
bulkRequest.add(indexRequest5);
User user6 = new User("关羽","男",41,27000);
String userData6 = objectMapper.writeValueAsString(user6);
IndexRequest indexRequest6 = new IndexRequest().index("user").id("1007").source(userData6, XContentType.JSON);
bulkRequest.add(indexRequest6);
BulkResponse bulkResponse = esClient.bulk(bulkRequest, RequestOptions.DEFAULT);
System.out.println(bulkResponse.status());
System.out.println(bulkResponse.getItems());
}
可以通过批量操作一次性删除多条数据
/**
* 批量删除
* @throws Exception
*/
public static void batchDelete() throws Exception{
BulkRequest bulkRequest = new BulkRequest();
DeleteRequest indexRequest1 = new DeleteRequest().index("user").id("1002");
DeleteRequest indexRequest2 = new DeleteRequest().index("user").id("1003");
DeleteRequest indexRequest3 = new DeleteRequest().index("user").id("1004");
DeleteRequest indexRequest4 = new DeleteRequest().index("user").id("1005");
DeleteRequest indexRequest5 = new DeleteRequest().index("user").id("1006");
DeleteRequest indexRequest6 = new DeleteRequest().index("user").id("1007");
bulkRequest.add(indexRequest1);
bulkRequest.add(indexRequest2);
bulkRequest.add(indexRequest3);
bulkRequest.add(indexRequest4);
bulkRequest.add(indexRequest5);
bulkRequest.add(indexRequest6);
BulkResponse bulkResponse = esClient.bulk(bulkRequest, RequestOptions.DEFAULT);
System.out.println(bulkResponse.status());
System.out.println(bulkResponse.getItems());
}
我们知道es最强大的功能就是文档检索了,接下来演示下与es文档查询相关的常用API的操作;
/**
* 查询某个索引下的所有数据
* @throws Exception
*/
public static void searchIndexAll() throws Exception{
SearchRequest request = new SearchRequest();
request.indices("user");
// 索引中的全部数据查询
SearchSourceBuilder query = new SearchSourceBuilder().query(QueryBuilders.matchAllQuery());
request.source(query);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
}
执行一下对该方法的调用
这个效果和在kibana中下面的操作效果是一样的
针对那种需要一次性查出多条数据的场景可以考虑使用
MultiGetRequest multiGetRequest = new MultiGetRequest();
multiGetRequest.add("user", "1002");
multiGetRequest.add("user", "1003");
MultiGetResponse responses = esClient
.mget(multiGetRequest, RequestOptions.DEFAULT);
Iterator iterator = responses.iterator();
while (iterator.hasNext()){
MultiGetItemResponse next = iterator.next();
System.out.println(next.getResponse().getSourceAsString());
}
根据性别查询,有点类似于mysql 中的 where sex='女' 这样的效果
TermQueryBuilder ageQueryBuilder = QueryBuilders.termQuery("sex", "女");
SearchSourceBuilder query = new SearchSourceBuilder().query(ageQueryBuilder);
request.source(query);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
考察from + size的使用
SearchSourceBuilder sourceBuilder = new
SearchSourceBuilder().query(QueryBuilders.matchAllQuery());
sourceBuilder.from(0).size(3);
request.source(sourceBuilder);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
将查询结果按照age进行排序
SearchSourceBuilder sourceBuilder = new
SearchSourceBuilder().query(QueryBuilders.matchAllQuery());
sourceBuilder.sort("age",SortOrder.ASC);
request.source(sourceBuilder);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
类似于mysql中只查询某个表的部分字段
SearchSourceBuilder sourceBuilder = new
SearchSourceBuilder().query(QueryBuilders.matchAllQuery());
request.source(sourceBuilder);
String[] includes = {"name","sex"};
String[] excludes = {"age"};
sourceBuilder.fetchSource(includes,excludes);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
es可以像mysql那样组合多个条件进行查询,考察对BoolQuery的使用,如下:查询性别为难男,年龄在35到45之间的用户;
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
boolQueryBuilder.must(QueryBuilders.matchQuery("sex","男"));
boolQueryBuilder.must(QueryBuilders.rangeQuery("age").lt(45).gt(35));
sourceBuilder.query(boolQueryBuilder);
request.source(sourceBuilder);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
RangeQueryBuilder rangeQueryBuilder =
QueryBuilders.rangeQuery("age").gte(35).lte(45);
sourceBuilder.query(rangeQueryBuilder);
request.source(sourceBuilder);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
FuzzyQueryBuilder fuzzyQueryBuilder =
QueryBuilders.fuzzyQuery("name", "黄忠")
.fuzziness(Fuzziness.ONE);
sourceBuilder.query(fuzzyQueryBuilder);
request.source(sourceBuilder);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
TermQueryBuilder ageQueryBuilder = QueryBuilders.termQuery("age", 33);
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.preTags("");
highlightBuilder.postTags("");
highlightBuilder.field("name");
sourceBuilder.highlighter(highlightBuilder);
sourceBuilder.query(ageQueryBuilder);
request.source(sourceBuilder);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
这个用法表示从多个字段中匹配某个关键字
SearchSourceBuilder builder = new SearchSourceBuilder();
MultiMatchQueryBuilder multiMatchQuery = QueryBuilders.multiMatchQuery("黄忠","name", "sex");
multiMatchQuery.operator(Operator.OR);
builder.query(multiMatchQuery);
request.source(builder);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
SearchSourceBuilder builder = new SearchSourceBuilder();
AggregationBuilder aggregationBuilder = AggregationBuilders.max("maxAge").field("age");
builder.aggregation(aggregationBuilder);
request.source(builder);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
SearchSourceBuilder builder = new SearchSourceBuilder();
AggregationBuilder aggregationBuilder = AggregationBuilders.terms("ageGroup").field("age");
builder.aggregation(aggregationBuilder);
request.source(builder);
SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);
System.out.println(response.getHits().getHits());
System.out.println(response.getHits().getTotalHits());
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits){
System.out.println(searchHit.getSourceAsString());
}
es提供了与spring,springboot快速整合的第三方SDK,接下来以spring-data为例进行说明;
spring-boot-starter-data-elasticsearch 与spring其他相关的jpa方式使用类似,封装了丰富的API接口,客户只需要继承其提供的接口,就能方便的使用内置的API
本地创建一个maven工程
org.springframework.boot
spring-boot-starter-parent
2.3.6.RELEASE
org.projectlombok
lombok
org.springframework.boot
spring-boot-starter-data-elasticsearch
org.springframework.boot
spring-boot-devtools
runtime
true
org.springframework.boot
spring-boot-starter-test
test
org.springframework.boot
spring-boot-test
junit
junit
org.springframework
spring-test
# es 服务地址
elasticsearch.host=IP
# es 服务端口
elasticsearch.port=9200
# 配置日志级别,开启 debug 日志
logging.level.com.congge=debug
该实体类属于连接es文档与客户端的一个中间转换层,使用过jpa或者mybatis-plus的同学对这个应该不陌生;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;
@Data
@NoArgsConstructor
@AllArgsConstructor
@ToString
@Document(indexName = "shopping", shards = 3, replicas = 1)
public class Product {
//必须有 id,这里的 id 是全局唯一的标识,等同于 es 中的"_id"
@Id
private Long id;//商品唯一标识
/**
* type : 字段数据类型
* analyzer : 分词器类型
* index : 是否索引(默认:true)
* Keyword : 短语,不进行分词
*/
@Field(type = FieldType.Text, analyzer = "ik_max_word")
private String title;//商品名称
@Field(type = FieldType.Keyword)
private String category;//分类名称
@Field(type = FieldType.Double)
private Double price;//商品价格
@Field(type = FieldType.Keyword, index = false)
private String images;//图片地址
}
import com.congge.entity.Product;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
import org.springframework.stereotype.Repository;
@Repository
public interface ProductDao extends ElasticsearchRepository{
}
import lombok.Data;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Configuration;
//import org.springframework.data.elasticsearch.config.AbstractElasticsearchConfiguration;
@ConfigurationProperties(prefix = "elasticsearch")
@Configuration
@Data
public class EsConfig extends com.congge.config.AbstractElasticsearchConfiguration {
private String host ;
private Integer port ;
//重写父类方法
@Override
public RestHighLevelClient elasticsearchClient() {
RestClientBuilder builder = RestClient.builder(new HttpHost(host, port));
RestHighLevelClient restHighLevelClient = new
RestHighLevelClient(builder);
return restHighLevelClient;
}
}
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.context.annotation.Bean;
import org.springframework.data.elasticsearch.config.ElasticsearchConfigurationSupport;
import org.springframework.data.elasticsearch.core.ElasticsearchOperations;
import org.springframework.data.elasticsearch.core.ElasticsearchRestTemplate;
import org.springframework.data.elasticsearch.core.convert.ElasticsearchConverter;
public abstract class AbstractElasticsearchConfiguration extends ElasticsearchConfigurationSupport {
//需重写本方法
public abstract RestHighLevelClient elasticsearchClient();
@Bean(name = { "elasticsearchOperations", "elasticsearchTemplate" })
public ElasticsearchOperations elasticsearchOperations(ElasticsearchConverter elasticsearchConverter) {
return new ElasticsearchRestTemplate(elasticsearchClient(), elasticsearchConverter);
}
}
接下来通过junit的方式进行测试
import com.congge.entity.Product;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.elasticsearch.core.ElasticsearchRestTemplate;
import org.springframework.test.context.junit4.SpringRunner;
@RunWith(SpringRunner.class)
@SpringBootTest
public class EsIndexTest {
//注入 ElasticsearchRestTemplate
@Autowired
private ElasticsearchRestTemplate elasticsearchRestTemplate;
//创建索引并增加映射配置
@Test
public void createIndex(){
//创建索引,系统初始化会自动创建索引
System.out.println("创建索引");
}
@Test
public void deleteIndex(){
//创建索引,系统初始化会自动创建索引
boolean flg = elasticsearchRestTemplate.deleteIndex(Product.class);
System.out.println("删除索引 = " + flg);
}
}
基于spring-data的方式,在工程启动的时候,会自动读取实体类相关的注解,自动完成索引的创建,运行下创建索引的测试方法;
然后去到kibana上面确认下是否创建成功;
该测试类中列举了常用的增删改查操作
import com.congge.dao.ProductDao;
import com.congge.entity.Product;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.TermQueryBuilder;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Sort;
import org.springframework.test.context.junit4.SpringRunner;
import java.util.ArrayList;
import java.util.List;
@RunWith(SpringRunner.class)
@SpringBootTest
public class EsDocTest {
@Autowired
private ProductDao productDao;
/**
* 新增
*/
@Test
public void save() {
Product product = new Product();
product.setId(2L);
product.setTitle("ipad mini");
product.setCategory("ipad");
product.setPrice(1998.0);
product.setImages("http://ipad.jpg");
productDao.save(product);
}
//修改
@Test
public void update(){
Product product = new Product();
product.setId(2L);
product.setTitle("iphone");
product.setCategory("mobile");
product.setPrice(6999.0);
product.setImages("http://www.phone.jpg");
productDao.save(product);
}
//根据 id 查询
@Test
public void findById(){
Product product = productDao.findById(2L).get();
System.out.println(product);
}
//查询所有
@Test
public void findAll(){
Iterable products = productDao.findAll();
for (Product product : products) {
System.out.println(product);
}
}
//删除
@Test
public void delete(){
Product product = new Product();
product.setId(2L);
productDao.delete(product);
}
//批量新增
@Test
public void saveAll(){
List productList = new ArrayList<>();
for (int i = 0; i < 10; i++) {
Product product = new Product();
product.setId(Long.valueOf(i));
product.setTitle("iphone" + i);
product.setCategory("mobile");
product.setPrice(5999.0 + i);
product.setImages("http://www.phone.jpg");
productList.add(product);
}
productDao.saveAll(productList);
}
//分页查询
@Test
public void findByPageable(){
//设置排序(排序方式,正序还是倒序,排序的 id)
Sort sort = Sort.by(Sort.Direction.DESC,"id");
int currentPage=0;//当前页,第一页从 0 开始, 1 表示第二页
int pageSize = 5;//每页显示多少条
//设置查询分页
PageRequest pageRequest = PageRequest.of(currentPage, pageSize,sort);
//分页查询
Page productPage = productDao.findAll(pageRequest);
for (Product Product : productPage.getContent()) {
System.out.println(Product);
}
}
/**
* term 查询
* search(termQueryBuilder) 调用搜索方法,参数查询构建器对象
*/
@Test
public void termQuery(){
TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "iphone");
Iterable products = productDao.search(termQueryBuilder);
for (Product product : products) {
System.out.println(product);
}
}
/**
* term 查询加分页
*/
@Test
public void termQueryByPage(){
int currentPage= 0 ;
int pageSize = 5;
//设置查询分页
PageRequest pageRequest = PageRequest.of(currentPage, pageSize);
TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "phone");
Iterable products =
productDao.search(termQueryBuilder,pageRequest);
for (Product product : products) {
System.out.println(product);
}
}
}
测试其中批量新增的方法
更多丰富的API接口的使用有兴趣的同学可以基于此继续深入的研究学习。