- Python 的 ORM(Object-Relational Mapping)工具浅讲
Code_Geo
python开发语言
SQLAlchemy相关讲解1.SQLAlchemy是什么?定义:一个Python的ORM(Object-RelationalMapping)工具,允许开发者通过Python类与对象操作数据库,而非直接编写SQL。核心组件:Core:底层SQL表达式语言,提供数据库无关的SQL操作接口。ORM:基于Core的高层抽象,将数据库表映射为Python类(模型),记录映射为对象。适用场景:需要灵活操作数
- #Python 项目:实现功能——使用钉钉“自定义”机器人在群中发送文字消息
Window Unlock
钉钉python机器人
(目前还是新手,程序难免有废话代码,请大家耐心看__比心)第一步:创建群聊机器人,参考官方手册官方链接:自定义机器人的创建和安装-钉钉开放平台此步骤可以得到两个关键参数:Webhook(机器人的通信网址):https://oapi.dingtalk.com/robot/send?############(如这样)secret(加签未解密密钥):SECe2######################
- 深度学习-130-RAG技术之基于Anything LLM搭建本地私人知识库的应用策略问题总结(一)
皮皮冰燃
深度学习深度学习人工智能RAG
文章目录1AnythingLLM的本地知识库1.1本地知识库应用场景1.2效果对比及思考1.3本地体现在哪些方面1.3.1知识在本地1.3.2分割后的文档在本地1.3.3大模型部署运行在本地2问错问题带来的问题2.1常见的问题2.2原因分析3为什么LLM不使用我的文件?3.1LLM不是万能的【omnipotent】3.2LLM不会自省【introspect】3.3AnythingLLM是如何工作的
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- Python-有效字母异位词
m0_37763377
python哈希算法算法数据结构
一、什么是字母异位词字母异位词是指由相同字母组成但排列顺序不同的单词。例如,"eat"、"tea"和"ate"都是字母异位词,因为它们由相同的字母组成,只是排列顺序不同。二、思路(一)暴力解法这里可以用两层循环来判断2个字符串的元素是否一样,显然时间复杂度为O(n²),在这里大家可以自己写一下,文章就不再提供演示。(二)哈希表解法1.什么是哈希表?哈希表(HashTable),也称为散列表,是
- LeetCode56☞合并区间
fantasy_4
LeetCode刷题leetcodepythonjava算法贪心算法
关联LeetCode题号56本题特点贪心本题思路将二维数组排序按照左边界排序。排序后,右边界的大小成为找到局部最大值的关键。由题意合并区间可知,应该取数组的’并集‘,局部最优解推出全局最优解,每次找到局部最大的范围,整体就会合并成一个大区间Python写法defmerge(self,intervals):result=[]iflen(intervals)==0:returnresult#区间集合为
- 【python】图形用户界面和游戏开发
usp1994
pythonuiide
图形用户界面和游戏开发文章目录图形用户界面和游戏开发基于tkinter模块的GUI使用Pygame进行游戏开发制作游戏窗口在窗口中绘图加载图像实现动画效果碰撞检测事件处理基于tkinter模块的GUIGUI是图形用户界面的缩写,图形化的用户界面对使用过计算机的人来说应该都不陌生,在此也无需进行赘述。Python默认的GUI开发模块是tkinter(在Python3以前的版本中名为Tkinter),
- Python 爬虫实战:如何爬取小红书数据并进行分析
Python爬虫项目
python爬虫开发语言selenium测试工具
一、引言随着社交电商的崛起,小红书(Xiaohongshu)作为一款结合了社交和电商的应用,吸引了大量年轻用户。用户在平台上分享购物心得、生活经验以及个性化的消费推荐内容,形成了庞大的用户数据与内容生态。因此,如何从小红书获取数据进行分析,成为了数据科学、市场营销和社交媒体研究中的一个重要课题。本文将介绍如何使用Python编写爬虫爬取小红书的数据,分析如何通过小红书的开放API获取用户信息、帖子
- Python 常用内建模块-base64
赔罪
Python系统学习python前端linux
目录base64小结练习base64Base64是一种用64个字符来表示任意二进制数据的方法。用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法。Base64是一种最常见的二进制编码方法。Base64的原理很简单,首先,准备一个包含64个字符的数
- 基于python的ansys_基于python的感知机
weixin_39687990
基于python的ansys
一、1、感知机可以描述为一个线性方程,用python的伪代码可表示为:sum(weight_i*x_i)+bias->activation#activation表示激活函数,x_i和weight_i是分别为与当前神经元连接的其它神经元的输入以及连接的权重。bias表示当前神经元的输出阀值(或称偏置)。箭头(->)左边的数据,就是激活函数的输入2、定义激活函数f:deffunc_activator(
- python ansys workbench联动_【干货】如何在ANSYS WORKBENCH中关联几何模型和有限元模型...
weixin_39644377
pythonansysworkbench联动
原标题:【干货】如何在ANSYSWORKBENCH中关联几何模型和有限元模型我们都知道,通过诸如HPERMESH这样的有限元网格划分软件得到的模型,在传入ANSYS以后,只包含节点和单元信息。但是当我们在WB中使用模型操作时,有时候需要选择几何特征,如在圆孔面上施加圆柱支撑,而此时对象只有单元节点信息,并无体面线的几何信息,该怎么办呢?显然,处理此问题的有效途径,在于把有限元模型与该有限元模型对应
- python ansys workbench联动_如何在ANSYS WORKBENCH中关联几何模型和有限元模型
YUNYA麻麻
pythonansysworkbench联动
我们都知道,通过诸如HPERMESH这样的有限元网格划分软件得到的模型,在传入ANSYS以后,只包含节点和单元信息。但是当我们在WB中使用模型操作时,有时候需要选择几何特征,如在圆孔面上施加圆柱支撑,而此时对象只有单元节点信息,并无体面线的几何信息,该怎么办呢?显然,处理此问题的有效途径,在于把有限元模型与该有限元模型对应的几何模型进行关联,再一起导入到MECHANICAL中进行分析,则既能够既享
- 数据增强:扩充数据集提升模型泛化能力
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1.数据增强的重要性在机器学习领域,模型的泛化能力至关重要。一个泛化能力强的模型能够在未见数据上表现良好,而过拟合的模型则会在训练数据上表现出色,但在新数据上表现糟糕。数据增强是一种有效提升模型泛化能力的技术,它通过对现有数据进行各种变换,人为地扩充数据集,从而增加训练数据的数量和多样性。1.2.数据增强的应用场景数据增强广泛应用于各种机器学习任务中,包括:图像识别:对图像进行旋转
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- 在 Ansys Mechanical 中创建等效应力结果并使用 Python 导出到文件
David WangYang
硬件工程
介绍在AnsysMechanical模型中,通常需要对许多实体/曲面体或它们组进行后处理等效应力或总变形等。使用分组在TreeGrouping文件夹中的NamedSelections,可以在Mechanical中编写Python脚本来自动生成结果对象。此外,once可以获取新创建的结果对象,并再次使用Mechanical中的Python脚本将所有结果集的结果导出到.csv文件。在本文中,我们将探讨
- 关于使用python进行处理雷达数据笔记
六毛驴
python数据分析
好久不见,甚是想念本人深知这段时间鸽了一篇博(上一篇博),后续会补上的,今天想写一下关于使用python进行TI雷达接收回波数据处理的一些常见问题和解决方法。这也是前几天领导给我布置的任务,所以我将这段时间自己遇到的并且已经解决的问题进行了简单的汇总,也会推荐几本这几天阅读了python书籍。python书籍推荐:python学习手册MarkLutz著(对应python版本3.X,2.X都可)Py
- Docker打包深度学习项目
FLY_LTL
docker深度学习容器
文章目录Docker打包深度学习项目1.Docker和NVIDIAContainerToolkit的安装1.Docker2.NVIDIAContainerToolkit3.添加国内镜像源2.使用Dockerfile打包并保存镜像1.Dockerfile2.通过Dockerfile生成镜像3.保存镜像和加载4.运行Docker并测试参考Docker打包深度学习项目本文来源于个人实践总结,供各位同学参
- 焊接性能分析代码(Python)
骑蜗牛上月亮
python开发语言
welding_performance_data.xls数据文件。welding_strengthtoughness5001052012480855015490953013510115401447075601690018600121500139111578115importpandasaspdimportmatplotlib.pyplotaspltimporttkinterastkfrommatp
- 从零实现B站视频下载器:Python自动化实战教程
木觞清
#编程语言自动化运维
一、项目背景与实现原理1.1B站视频分发机制Bilibili的视频采用音视频分离技术,通过以下方式提升用户体验:动态码率适配(1080P/4K/HDR)分段加载技术(基于M4S格式)内容保护机制(防盗链/签名验证)1.2技术实现路线graphTDA[模拟浏览器请求]-->B[获取加密播放信息]B-->C[解析音视频地址]C-->D[多线程下载]D-->E[FFmpeg合并]二、代码逐层解析2.1请
- chatgpt赋能python:Python处理雷达基数据:从入门到实践
lvsetongdao123
ChatGptpythonchatgpt开发语言计算机
Python处理雷达基数据:从入门到实践随着气象技术的不断发展,雷达探测技术已成为当今天气预报和气象研究的主要手段之一。雷达基数据是气象雷达接收到的未经加工的原始数据,因其包含大量天气信息,不仅在天气预报、天气预警等方面得到了广泛应用,还被广泛地用于气象科研和大气环境研究。本文将介绍如何使用Python处理雷达基数据,解析其中的信息,获取有效的天气数据,以及分析和可视化这些数据。雷达基数据格式与处
- 使用TensorFlow、OpenCV和Pygame实现图像处理与游戏开发
UwoiGit
tensorflowopencvpygame
在本篇文章中,我们将介绍如何结合使用TensorFlow、OpenCV和Pygame来进行图像处理和游戏开发。这三个工具在机器学习、计算机视觉和游戏开发领域都非常流行,并且它们的结合可以提供强大的功能和无限的创造力。我们将逐步介绍如何安装和配置这些工具,并提供相关的源代码示例。安装TensorFlowTensorFlow是一个基于数据流图的开源机器学习框架,提供了丰富的工具和库来构建和训练各种深度
- PTA天梯赛PYthon7-10 树的遍历
胡同Alley
算法数据结构python
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。输入格式:输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。输出格式:在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。输入样例:723157641234567输出样例:4163572代码长度限制
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 机器学习流程—数据预处理 清洗
不二人生
机器学习机器学习人工智能数据预处理
文章目录机器学习流程—数据预处理清洗定义问题数据预处理数据加载与展示重复数据处理数据类型空值处理无关特征删除数据分布删除异常值生成标签和特征数据分割机器学习流程—数据预处理清洗数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具
- Python自动化运维开发系列—CICD项目
weixin_46240874
导语都忘记是什么时候知道python的了,我是搞linux运维的,早先只是知道搞运维必须会shell,要做一些运维自动化的工作,比如实现一些定时备份数据啊、批量执行某个操作啊、写写监控脚本什么的。后来发现工作量大的时候shell开始变慢,实现某个功能使用shell感觉力不从心,听人说python能实现shell能做的一切功能,而且开发效率高,速度快,慢慢的就认识了python,多多少少看点简单的东
- 深度革命:ResNet 如何用 “残差连接“ 颠覆深度学习
安意诚Matrix
机器学习笔记深度学习人工智能
一文快速了解ResNet创新点在深度学习的历史长河中,2015年或许是最具突破性的一年。这一年,微软亚洲研究院的何恺明团队带着名为ResNet(残差网络)的模型横空出世,在ImageNet图像分类竞赛中以3.57%的错误率夺冠,将人类视觉的识别误差(约5.1%)远远甩在身后。更令人震撼的是,ResNet将神经网络的深度推至152层,彻底打破了"深层网络无法训练"的魔咒。这场革命的核心,正是一个简单
- 智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
AI筑梦师
计算机视觉算法深度学习人工智能机器学习计算机视觉python
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算1.引言1.1研究背景在计算机视觉、模式识别、医学影像分析和自动驾驶等领域,形状匹配是核心任务之一。然而,现实世界的形状往往存在可变性(Variability),主要体现在以下几个方面:形变(Deformation):物体可能由于柔性材料、外力作用或生物运动发生非刚性形变。尺度变化(ScaleVariation):目标形状在不同场景下可能大
- 每日实战:python爬虫之网页跳转-以某博为例
代码CC
python爬虫python爬虫pandas开发语言
一、项目背景与核心需求通过逆向分析微博热榜接口,实现实时热搜数据抓取,重点解决:话题跳转链接参数缺失问题页面数据清洗规范化处理多维度数据采集存储二、网页跳转爬虫实现原理2.1跳转链接生成逻辑原始热搜词→"雷军刚知道柯洁定了SU7Ultra"处理流程:1.添加话题标识→#雷军刚知道柯洁定了SU7Ultra#2.URL编码→%23雷军刚知道柯洁定了SU7Ultra%233.添加搜索参数→&t=31生成
- 基于 Python 将 PDF 转 Markdown 并拆解为 JSON,支持自定义标题处理
drebander
pythonpdfjson
在日常工作中,我们经常需要将PDF文件转换为可编辑、可结构化的数据格式,比如Markdown和JSON。但实际操作中,自动化工具往往会出现标题识别不准确的问题,尤其是PDF转换过程中,缺乏明确的标题标识。这篇文章将教你如何使用Python将PDF转换为Markdown,并通过自定义规则精准识别标题,最终将内容按标题结构拆解为JSON,方便后续快速检索与使用。1.实现目标将PDF文件转换为Markd
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st