信号的抽取

多速率信号处理

信号的抽取

M倍抽取(down-sampler,M-fold decimator)
在这里插入图片描述
表示为: y [ k ] = x [ M k ] % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaqG5bGaai4waiaadUgacaGGDbGaeyyp % a0JaamiEaiaacUfacaWGnbGaam4Aaiaac2faaaa!486F! {\rm{y}}[k] = x[Mk] y[k]=x[Mk]

例,2倍频抽取:

信号的抽取_第1张图片
其中抽样系统为时变的,例:

信号的抽取_第2张图片
利用MATLAB实现序列抽取:

信号的抽取_第3张图片
N倍频抽取的变换域描述:

y ( n ) = u ( N n ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWG5bGaaiikaiaad6gacaGGPaGaeyyp % a0JaamyDaiaacIcacaWGobGaamOBaiaacMcaaaa!47A7! y(n) = u(Nn) y(n)=u(Nn),其中 y ( n ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWG5bGaaiikaiaad6gacaGGPaaaaa!4288! y(n) y(n)为抽取器的输出;

Y ( e j w ) = 1 N ∑ k U ( e j w − 2 π k N ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGzbGaaiikaiaadwgadaahaaWcbeqa % aiaadQgacaWG3baaaOGaaiykaiabg2da9maalaaabaGaaGymaaqaai % aad6eaaaWaaabuaeaacaWGvbGaaiikaiaadwgadaahaaWcbeqaaiaa % dQgadaWcaaqaaiaadEhacqGHsislcaaIYaGaeqiWdaNaam4Aaaqaai % aad6eaaaaaaOGaaiykaaWcbaGaam4Aaaqab0GaeyyeIuoaaaa!54B0! Y({e^{jw}}) = \frac{1}{N}\sum\limits_k {U({e^{j\frac{{w - 2\pi k}}{N}}})} Y(ejw)=N1kU(ejNw2πk)

Y ( z ) = 1 N ∑ k U ( z 1 N W k ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGzbGaaiikaiaadQhacaGGPaGaeyyp % a0ZaaSaaaeaacaaIXaaabaGaamOtaaaadaaeqbqaaiaadwfacaGGOa % GaamOEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOtaaaaaaGc % caWGxbWaaWbaaSqabeaacaWGRbaaaOGaaiykaaWcbaGaam4Aaaqab0 % GaeyyeIuoaaaa!4F35! Y(z) = \frac{1}{N}\sum\limits_k {U({z^{\frac{1}{N}}}{W^k})} Y(z)=N1kU(zN1Wk)

其中 u ( n ) ⇔ U ( e j w ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWG1bGaaiikaiaad6gacaGGPaGaeyi1 % HSTaamyvaiaacIcacaWGLbWaaWbaaSqabeaacaWGQbGaam4Daaaaki % aacMcaaaa!4A1F! u(n) \Leftrightarrow U({e^{jw}}) u(n)U(ejw) u ( n ) ⇔ U ( z ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWG1bGaaiikaiaad6gacaGGPaGaeyi1 % HSTaamyvaiaacIcacaWG6bGaaiykaaaa!4812! u(n) \Leftrightarrow U(z) u(n)U(z)

证明: y ( n ) ⇔ Y ( z ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWG5bGaaiikaiaad6gacaGGPaGaeyi1 % HSTaamywaiaacIcacaWG6bGaaiykaaaa!481A! y(n) \Leftrightarrow Y(z) y(n)Y(z)

δ N ( n ) = ∑ r = − ∞ + ∞ δ ( n − r N ) = 1 N ∑ k = 0 N − 1 e j 2 π N n k % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqaH0oazdaWgaaWcbaGaamOtaaqabaGc % caGGOaGaamOBaiaacMcacqGH9aqpdaaeWbqaaiabes7aKjaacIcaca % WGUbGaeyOeI0IaamOCaiaad6eacaGGPaaaleaacaWGYbGaeyypa0Ja % eyOeI0IaeyOhIukabaGaey4kaSIaeyOhIukaniabggHiLdGccqGH9a % qpdaWcaaqaaiaaigdaaeaacaWGobaaamaaqahabaGaamyzamaaCaaa % leqabaGaamOAamaalaaabaGaaGOmaiabec8aWbqaaiaab6eaaaGaam % OBaiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGobGaeyOe % I0IaaGymaaqdcqGHris5aaaa!6629! {\delta _N}(n) = \sum\limits_{r = - \infty }^{ + \infty } {\delta (n - rN)} = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {{e^{j\frac{{2\pi }}{{\text{N}}}nk}}} δN(n)=r=+δ(nrN)=N1k=0N1ejN2πnk

Y ( z ) = ∑ n = − ∞ + ∞ y ( n ) z − n = ∑ n = − ∞ + ∞ u ( N n ) z − n % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGzbGaaiikaiaadQhacaGGPaGaeyyp % a0ZaaabCaeaacaWG5bGaaiikaiaad6gacaGGPaGaamOEamaaCaaale % qabaGaeyOeI0IaamOBaaaaaeaacaWGUbGaeyypa0JaeyOeI0IaeyOh % IukabaGaey4kaSIaeyOhIukaniabggHiLdGccqGH9aqpdaaeWbqaai % aadwhacaGGOaGaamOtaiaad6gacaGGPaGaamOEamaaCaaaleqabaGa % eyOeI0IaamOBaaaaaeaacaWGUbGaeyypa0JaeyOeI0IaeyOhIukaba % Gaey4kaSIaeyOhIukaniabggHiLdaaaa!63C7! Y(z) = \sum\limits_{n = - \infty }^{ + \infty } {y(n){z^{ - n}}} = \sum\limits_{n = - \infty }^{ + \infty } {u(Nn){z^{ - n}}} Y(z)=n=+y(n)zn=n=+u(Nn)zn

= ∑ n = − ∞ , n = i N + ∞ u ( n ) z − n N % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGH9aqpdaaeWbqaaiaadwhacaGGOaGa % amOBaiaacMcacaWG6bWaaWbaaSqabeaacqGHsisldaWcaaqaaiaad6 % gaaeaacaWGobaaaaaaaqaaceqaaiaad6gacqGH9aqpcqGHsislcqGH % EisPcaGGSaaabaGaamOBaiabg2da9iaadMgacaaJobaaaeaacqGHRa % WkcqGHEisPa0GaeyyeIuoaaaa!54D5! = \sum\limits_{ n = - \infty , \\ n = iN } ^{ + \infty } {u(n){z^{ - \frac{n}{N}}}} =n=,n=iN+u(n)zNn

= ∑ n = − ∞ + ∞ u ( n ) δ N ( n ) z − n N % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGH9aqpdaaeWbqaaiaadwhacaGGOaGa % amOBaiaacMcacqaH0oazdaWgaaWcbaGaamOtaaqabaGccaGGOaGaam % OBaiaacMcacaWG6bWaaWbaaSqabeaacqGHsisldaWcaaqaaiaad6ga % aeaacaWGobaaaaaaaeaacaWGUbGaeyypa0JaeyOeI0IaeyOhIukaba % Gaey4kaSIaeyOhIukaniabggHiLdaaaa!5554! = \sum\limits_{n = - \infty }^{ + \infty } {u(n){\delta _N}(n){z^{ - \frac{n}{N}}}} =n=+u(n)δN(n)zNn

= ∑ n = − ∞ + ∞ u ( n ) ( 1 N ∑ k = 0 N − 1 e j 2 π N n k ) z − n N % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGH9aqpdaaeWbqaaiaadwhacaGGOaGa % amOBaiaacMcacaGGOaWaaSaaaeaacaaIXaaabaGaamOtaaaadaaeWb % qaaiaadwgadaahaaWcbeqaaiaadQgadaWcaaqaaiaaikdacqaHapaC % aeaacaqGobaaaiaad6gacaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWa % aabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIuoakiaacMcacaWG6bWa % aWbaaSqabeaacqGHsisldaWcaaqaaiaad6gaaeaacaWGobaaaaaaae % aacaWGUbGaeyypa0JaeyOeI0IaeyOhIukabaGaey4kaSIaeyOhIuka % niabggHiLdaaaa!6200! = \sum\limits_{n = - \infty }^{ + \infty } {u(n)(\frac{1}{N}\sum\limits_{k = 0}^{N - 1} {{e^{j\frac{{2\pi }}{{\text{N}}}nk}}} ){z^{ - \frac{n}{N}}}} =n=+u(n)(N1k=0N1ejN2πnk)zNn

= 1 N ∑ k = 0 N − 1 ( ∑ n = − ∞ + ∞ u ( n ) e j 2 π N n k z − n N ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWG % obaaamaaqahabaGaaiikamaaqahabaGaamyDaiaacIcacaWGUbGaai % ykaiaadwgadaahaaWcbeqaaiaadQgadaWcaaqaaiaaikdacqaHapaC % aeaacaqGobaaaiaad6gacaWGRbaaaOGaamOEamaaCaaaleqabaGaey % OeI0YaaSaaaeaacaWGUbaabaGaamOtaaaaaaaabaGaamOBaiabg2da % 9iabgkHiTiabg6HiLcqaaiabgUcaRiabg6HiLcqdcqGHris5aOGaai % ykaaWcbaGaam4Aaiabg2da9iaaicdaaeaacaWGobGaeyOeI0IaaGym % aaqdcqGHris5aaaa!6215! = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {(\sum\limits_{n = - \infty }^{ + \infty } {u(n){e^{j\frac{{2\pi }}{{\text{N}}}nk}}{z^{ - \frac{n}{N}}}} )} =N1k=0N1(n=+u(n)ejN2πnkzNn)

= 1 N ∑ k = 0 N − 1 [ ∑ n = − ∞ + ∞ u ( n ) ( e − j 2 π N k z 1 N ) − n ] % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWG % obaaamaaqahabaWaamWaaeaadaaeWbqaaiaadwhacaGGOaGaamOBai % aacMcacaGGOaGaamyzamaaCaaaleqabaGaeyOeI0IaamOAamaalaaa % baGaaGOmaiabec8aWbqaaiaab6eaaaGaam4AaaaakiaadQhadaahaa % WcbeqaamaalaaabaGaaGymaaqaaiaad6eaaaaaaOGaaiykamaaCaaa % leqabaGaeyOeI0IaamOBaaaaaeaacaWGUbGaeyypa0JaeyOeI0Iaey % OhIukabaGaey4kaSIaeyOhIukaniabggHiLdaakiaawUfacaGLDbaa % aSqaaiaadUgacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0 % GaeyyeIuoaaaa!64F3! = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {\left[ {\sum\limits_{n = - \infty }^{ + \infty } {u(n){{({e^{ - j\frac{{2\pi }}{{\text{N}}}k}}{z^{\frac{1}{N}}})}^{ - n}}} } \right]} =N1k=0N1[n=+u(n)(ejN2πkzN1)n]

= 1 N ∑ k = 0 N − 1 [ ∑ n = − ∞ + ∞ u ( n ) ( W k z 1 N ) − n ] % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWG % obaaamaaqahabaWaamWaaeaadaaeWbqaaiaadwhacaGGOaGaamOBai % aacMcacaGGOaGaam4vamaaCaaaleqabaGaam4AaaaakiaadQhadaah % aaWcbeqaamaalaaabaGaaGymaaqaaiaad6eaaaaaaOGaaiykamaaCa % aaleqabaGaeyOeI0IaamOBaaaaaeaacaWGUbGaeyypa0JaeyOeI0Ia % eyOhIukabaGaey4kaSIaeyOhIukaniabggHiLdaakiaawUfacaGLDb % aaaSqaaiaadUgacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigda % a0GaeyyeIuoaaaa!5FAF! = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {\left[ {\sum\limits_{n = - \infty }^{ + \infty } {u(n){{({W^k}{z^{\frac{1}{N}}})}^{ - n}}} } \right]} =N1k=0N1[n=+u(n)(WkzN1)n]

= 1 N ∑ k = 0 N − 1 U ( W k z 1 N ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWG % obaaamaaqahabaGaamyvaiaacIcacaWGxbWaaWbaaSqabeaacaWGRb % aaaOGaamOEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOtaaaa % aaGccaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6eacqGHsi % slcaaIXaaaniabggHiLdaaaa!5059! = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {U({W^k}{z^{\frac{1}{N}}})} =N1k=0N1U(WkzN1)

所以, Y ( z ) = 1 N ∑ k U ( z 1 N W k ) % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqipv0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGzbGaaiikaiaadQhacaGGPaGaeyyp % a0ZaaSaaaeaacaaIXaaabaGaamOtaaaadaaeqbqaaiaadwfacaGGOa % GaamOEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOtaaaaaaGc % caWGxbWaaWbaaSqabeaacaWGRbaaaOGaaiykaaWcbaGaam4Aaaqab0 % GaeyyeIuoaaaa!4F35! Y(z) = \frac{1}{N}\sum\limits_k {U({z^{\frac{1}{N}}}{W^k})} Y(z)=N1kU(zN1Wk),证毕!
参考原文为:多速率信号处理基础

你可能感兴趣的:(信号处理,傅立叶分析)