import torch from matplotlib import pyplot as plt from torchvision import datasets from torch.utils.data import DataLoader from torchvision import transforms import torch.optim as optim import numpy as np batch_size = 64 batch_size_test = 100 data_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) minist_tainloader = datasets.MNIST(root='./', train=True, download=True, transform=data_transform) minist_testloader = datasets.MNIST(root='./', train=False, download=True, transform=data_transform) trainloader = DataLoader(minist_tainloader, batch_size=batch_size, shuffle=True) testloader = DataLoader(minist_testloader, batch_size=batch_size_test, shuffle=False) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.linear1 = torch.nn.Linear(784, 512) self.linear2 = torch.nn.Linear(512, 256) self.linear3 = torch.nn.Linear(256, 128) self.linear4 = torch.nn.Linear(128, 64) self.linear5 = torch.nn.Linear(64, 10) self.relu = torch.nn.ReLU() def forward(self, x): x = x.view(-1, 784) x = self.relu(self.linear1(x)) x = self.relu(self.linear2(x)) x = self.relu(self.linear3(x)) x = self.relu(self.linear4(x)) return self.linear5(x) model = Model() criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=1e-2, momentum=0.5) loss_list = list() def test_accuracy(): correct = 0 with torch.no_grad(): for data in testloader: images, labels = data pred = model(images) total_num = 0 correct = 0 for i in range(batch_size_test): labels_np = labels.numpy().tolist() pred_np = pred.numpy().tolist() total_num += 1 if labels_np[i] == pred_np[i].index(max(pred_np[i])): correct += 1 print(f'Accuracy = {correct/total_num}, i = {i}') if __name__ == '__main__': for epoch in range(10): for i, data in enumerate(trainloader, 0): inputs, label = data outputs = model(inputs) optimizer.zero_grad() loss = criterion(outputs, label) loss_list.append(loss) loss.backward() optimizer.step() print(f'[{epoch}]: loss = {loss}')