接口定义:
class torch.nn.Conv2d(in_channels,
out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True)
参数说明:
在加载了预训练模型参数之后,需要finetuning模型,可以使用不同的方式finetune:
局部微调: 加载了模型参数后,只想调节最后几层,其它层不训练,也就是不进行梯度计算,pytorch提供的requires_grad使得对训练的控制变得非常简单。
model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
param.requires_grad = False
# 替换最后的全连接层, 改为训练100类
# 新构造的模块的参数默认requires_grad为True
model.fc = nn.Linear(512, 100)
# 只优化最后的分类层
optimizer = optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9)
全局微调: 对全局微调时,只不过我们希望改换过的层和其他层的学习速率不一样,这时候把其它层和新层在optimizer中单独赋予不同的学习速率。
ignored_params = list(map(id, model.fc.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params,
model.parameters())
optimizer = torch.optim.SGD([
{'params': base_params},
{'params': model.fc.parameters(), 'lr': 1e-3}
], lr=1e-2, momentum=0.9)
model.gpu() 把模型放在gpu上
model = nn . DataParallel ( model ) 。DataParallel并行的方式,是将输入一个batch的数据均分成多份,分别送到对应的GPU进行计算,各个GPU得到的梯度累加。与Module相关的所有数据也都会以浅复制的方式复制多份,在此需要注意,在module中属性应该是只读的。
对模型和相应的数据进行.cuda()处理,可以将内存中的数据复制到gpu显存中去
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
if torch.cuda.is_available():
model.cuda()
torch.nn:核心数据结构是Module,抽象的概念,既可以表示神经网络某个层layer,也可以表示一个包含很多层的神经网络。常见做法是继承nn.Module,编写自己的层。
nn.conv2d卷积层
AvgPool,Maxpool,AdaptiveAvgPool
TransposeConv逆卷积
nn.Linear全连接层
nn.BatchNorm1d(1d,2d,3d)
nn.dropout
nn.ReLU
nn.Sequential
nn.ModuleList(),可以包含几个子module,可以像list一样使用它,但不能直接把输入传给MuduleList
nn.LSTM(4,3,1) 输入向量4维,隐藏元3,1层 nn.LSTMCell(4,3) 对应层数只能是一层
nn.Embedding(4,5)4个词,每个词使用5个向量表示
损失函数也是nn.Module的子类。nn.CrossEntropLoss() loss = criterion(score,label)
torch.optim 将深度学习常用优化方法全部封装在torch.optim中,所有优化方法继承基类optim.Optimizer,并实现了自己的优化步骤
# 为不同子网络设置不同的学习率,在finetune中经常用到
# 如果对某个参数不指定学习率,就使用最外层的默认学习率
optimizer =optim.SGD([
{'params': net.features.parameters()}, # 学习率为1e-5
{'params': net.classifier.parameters(), 'lr': 1e-2}
], lr=1e-5)
调整学习率的方法,两种
# 方法1: 调整学习率,新建一个optimizer
old_lr = 0.1
optimizer1 =optim.SGD([
{'params': net.features.parameters()},
{'params': net.classifier.parameters(), 'lr': old_lr*0.1}
], lr=1e-5)
# 方法2: 调整学习率, 手动decay, 保存动量
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.1 # 学习率为之前的0.1倍
nn.functional中的函数和nn.Module主要区别:
定义如下:对batch的数据进行操作,同时还需要对数据进行shuffle和并行加速等。
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False)
dataset:加载的数据集(Dataset对象)
batch_size:batch size
shuffle::是否将数据打乱
sampler: 样本抽样,后续会详细介绍
num_workers:使用多进程加载的进程数,0代表不使用多进程
collate_fn: 如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可
pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些
drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃