pytorch中的BatchNorm和LayerNorm

参考文章
https://blog.csdn.net/weixin_39228381/article/details/107896863
https://blog.csdn.net/weixin_39228381/article/details/107939602

  1. BatchNorm是在batch方向(每个batch的列方向)进行归一化:

    import torch.nn as nn
    import torch
    if __name__ == '__main__':
      norm = nn.BatchNorm1d(4, affine=False)
      inputs = torch.FloatTensor([[1,2,3,4],
                     			  [5,6,7,8]])
      print(inputs)
      output = norm(inputs)
      print(output)
      '''
      	tensor([[-1.0000, -1.0000, -1.0000, -1.0000],
        		[ 1.0000,  1.0000,  1.0000,  1.0000]])
      '''
    
    
  2. LayerNorm是在每个batct的行方向上进行归一化:

    import torch.nn as nn
    import torch
    if __name__ == '__main__':
      norm = nn.LayerNorm(4)
      inputs = torch.FloatTensor([[1,2,3,4],
                     			  [5,6,7,8]])
      output = norm(inputs)
      print(output)
      '''
      	tensor([[-1.3416, -0.4472,  0.4472,  1.3416],
        		[-1.3416, -0.4472,  0.4472,  1.3416]],
       				grad_fn=)
      '''
    
    1. 详细计算过程可参考上方链接,在计算过程中,需要注意样本方差的无偏估计和有偏估计
      有偏和无偏的区别在于无偏的分母是N-1,有偏的分母是N。

你可能感兴趣的:(pytorch)