import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
batch_size=100
n_batch=mnist.train.num_examples//batch_size
#初始化权值
def weight_variable(shape):
initial=tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)
#初始化偏置
def bias_variable(shape):
initial=tf.constant(0.1,shape=shape)
return tf.Variable(initial)
#卷积层
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#池化层
def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#定义两个placeholder
x=tf.placeholder(tf.float32,[None,784])#28*28
y=tf.placeholder(tf.float32,[None,10])
#改变x的格式为4D的向量[batch,in_height,in_width,in_channels]
x_image=tf.reshape(x,[-1,28,28,1])
#初始化第一个卷积层的权值和偏置
W_conv1=weight_variable([5,5,1,32])#5*5的采样窗口,通道数为1,32个卷积核
b_conv1=bias_variable([32])#每一个卷积核对应一个偏置值
#把x_image和权值向量进行卷积,再加上偏置值,然后应用relu函数进行激活
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)#进行max_pooling
#初始化第二个卷积层的权值和偏置
W_conv2=weight_variable([5,5,32,64])#5*5的采样窗口,通道数为32,64个卷积核
b_conv2=bias_variable([64])#每一个卷积核对应一个偏置值
#把h_pool1和权值向量进行卷积,再加上偏置值,然后应用relu函数进行激活
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)#进行max_pooling
#28*28的图片经过第一次卷积后还是28*28,第一次池化后变为14*14
#第二次卷积后为14*14,第二次池化后变为7*7
#经过上面的操作之后的到深度为64(64张)7*7的平面
#初始化第一个全连接层的权值
W_fc1=weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元
b_fc1=bias_variable([1024])#1024个节点
#把池化层2的输出扁平化为1维
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
#keep_prob用来表示神经元的输出概率
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
#初始化第二个全连接层的输出
W_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10])
#计算输出
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#交叉熵代价函数
cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用AdamOptimizer进行优化
train_step=tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)
#结果存放在一个布尔型列表中
correct_prediction=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))#argmax返回一维张量中最大的值的下标
#计算准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(21):
for batch in range(n_batch):
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print("Iter"+str(epoch)+",Testing Accuracy="+str(acc))
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
Iter0,Testing Accuracy=0.8634
Iter1,Testing Accuracy=0.9681
Iter2,Testing Accuracy=0.9741
Iter3,Testing Accuracy=0.9811
Iter4,Testing Accuracy=0.9825
Iter5,Testing Accuracy=0.9846
时间有点长,我就截取了前六个,准确率达到了0.98,这已经超过人眼识别了。。