卷积神经网络架构综述

A Survey of the Recent Architectures of Deep Convolutional Neural Networks (arxiv.org)

度卷积神经网络(CNN)是一种特殊类型的神经网络,在各种竞赛基准上表现出了当前最优结果。深度 CNN 的超强学习能力主要是通过使用多个非线性特征提取阶段实现的这些阶段能够从数据中自动学习分层表征。近来,深度 CNN 架构在挑战性基准任务比赛中实现的高性能表明,创新的架构理念以及参数优化可以提高 CNN 在各种视觉相关任务上的性能。鉴于此,关于 CNN 设计的不同想法被探索出来,如使用不同的激活函数和损失函数、参数优化、正则化以及处理单元的重构。然而,在表征能力方面的主要改进是通过重构处理单元来实现的。尤其是,使用块而不是层来作为结构单元的想法获得了极大的赞赏。本综述将最近的 CNN 架构创新分为七个不同的类别。这七个类别分别基于空间利用、深度、多路径、宽度、特征图利用、通道提升和注意力

引言

1989 年 LeCun 处理网格状拓扑数据(图像和时间系列数据)的研究,CNN 首次受到关注。CNN 被视为理解图像内容的最好技术之一,并且在图像识别、分割、检测和检索相关任务上表现出了当前最佳性能。在产业界,如谷歌、

你可能感兴趣的:(深度学习,cnn,深度学习)