tensorflow2.1.0加载模型keras.models.load_model()没反应,原因可能是你的tf不支持版本过高的h5py

1.这是我的代码:

import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow import keras

model_name = 'rygh_logistic_save.h5'

# print(data.iloc[:, -1].value_counts())    这里可知,y都是-1,1的数据,明显是个二分类问题,但是我们需要将-1替换成0
data = pd.read_csv('./datas/rygh/credit-a.csv')
print(data.head())
x = data.iloc[:, : -1]
y = data.iloc[:, -1].replace(-1, 0)

try:
    model = keras.models.load_model('./models_lei/{model_name}'.format(model_name=model_name))
    print('Successfully reloaded the model...')
except:
    print('The model does not exist, we have to train a new one...')
    model = keras.Sequential()

    model.add(keras.layers.Dense(4, input_shape=(15, ), activation='relu'))
    model.add(keras.layers.Dense(4, activation='relu'))

    model.add(keras.layers.Dense(1, activation='sigmoid'))
    # print(model.summary())

    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=['acc']
    )

    model.fit(x, y, epochs=100)
    # history = model.fit(x, y, epochs=100)
    # 查看损失和正确率的曲线
    # print(history.history.keys())   #dict_keys(['loss', 'acc'])
    # plt.plot(history.epoch, history.history.get('loss'))
    # plt.plot(history.epoch, history.history.get('acc'))
    # plt.show()

    model.save('./models_lei/{model_name}'.format(model_name=model_name))

test = data.iloc[:5, :-1]
real = data.iloc[:5, -1]
predict = model.predict(test)
print('real:', real)
print('predict:', predict)

在搞keras的时候出现了一个问题,当我试图启动已经保存的模型的时候,即使打断点调试,

print('Successfully reloaded the model...')

上面这一句代码始终没有执行,说明我启动这个模型失败了。搞了半天也没找到问题的原因。

2.我甚至连哪错了都不知道。

然后我把try和except注释掉了,运行:

import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow import keras

model_name = 'rygh_logistic_save.h5'

# print(data.iloc[:, -1].value_counts())    这里可知,y都是-1,1的数据,明显是个二分类问题,但是我们需要将-1替换成0
data = pd.read_csv('./datas/rygh/credit-a.csv')
print(data.head())
x = data.iloc[:, : -1]
y = data.iloc[:, -1].replace(-1, 0)
model = keras.models.load_model('./models_lei/{model_name}'.format(model_name=model_name))
test = data.iloc[:5, :-1]
real = data.iloc[:5, -1]
predict = model.predict(test)
print('real:', real)
print('predict:', predict)

报错为

tensorflow2.1.0加载模型keras.models.load_model()没反应,原因可能是你的tf不支持版本过高的h5py_第1张图片3.解决方法

有人说

tensorflow2.1.0加载模型keras.models.load_model()没反应,原因可能是你的tf不支持版本过高的h5py_第2张图片

我的tensorflow版本是2.1.0,当我查看我已被迫安装的h5py时,发现它的版本真的是3.1.0,所以把3.1.0版本的h5py先删除掉,再添加2.10.0版本的h5py。

然后运行,没问题了:

tensorflow2.1.0加载模型keras.models.load_model()没反应,原因可能是你的tf不支持版本过高的h5py_第3张图片

你可能感兴趣的:(python)