CNN学习MNIST实现手写数字识别

CNN的实现

我们之前已经实现了卷积层和池化层,现在来组合这些层,搭建进行手写数字识别的CNN。

CNN学习MNIST实现手写数字识别_第1张图片

# 初始化权重
self.params = {'W1': weight_init_std * np.random.randn(filter_num, input_dim[0], filter_size, filter_size),
               'b1': np.zeros(filter_num),
               'W2': weight_init_std * np.random.randn(pool_output_size, hidden_size),
               'b2': np.zeros(hidden_size),
               'W3': weight_init_std * np.random.randn(hidden_size, output_size),
               'b3': np.zeros(output_size)}

# 生成层
self.layers = OrderedDict()
self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'], conv_param['stride'], conv_param['pad'])
self.layers['Relu1'] = Relu()
self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
self.layers['Relu2'] = Relu()
self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

self.last_layer = SoftmaxWithLoss()

SimpleConvNet类实现如下:

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *
from common.gradient import numerical_gradient


class SimpleConvNet:
    """简单的ConvNet

    conv - relu - pool - affine - relu - affine - softmax
    
    Parameters
    ----------
    input_size : 输入大小(MNIST的情况下为784hidden_size_list : 隐藏层的神经元数量的列表(e.g. [100, 100, 100]output_size : 输出大小(MNIST的情况下为10activation : 'relu' or 'sigmoid'
    weight_init_std : 指定权重的标准差(e.g. 0.01)
        指定'relu''he'的情况下设定“He的初始值”
        指定'sigmoid''xavier'的情况下设定“Xavier的初始值”
    """
    def __init__(self, input_dim=(1, 28, 28),
                 conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
        """
        :param input_dim:输入数据的维度:(通道,高,长)
        :param conv_param:卷积层的超参数(字典)。字典的关键字如下:
                filter_num―滤波器的数量
                filter_size―滤波器的大小
                stride―步幅
                pad―填充
        :param hidden_size:隐藏层(全连接)的神经元数量
        :param output_size:输出层(全连接)的神经元数量
        :param weight_init_std:初始化时权重的标准差
        """
        filter_num = conv_param['filter_num']
        filter_size = conv_param['filter_size']
        filter_pad = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1
        pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))

        # 初始化权重
        self.params = {'W1': weight_init_std * np.random.randn(filter_num, input_dim[0], filter_size, filter_size),
                       'b1': np.zeros(filter_num),
                       'W2': weight_init_std * np.random.randn(pool_output_size, hidden_size),
                       'b2': np.zeros(hidden_size),
                       'W3': weight_init_std * np.random.randn(hidden_size, output_size),
                       'b3': np.zeros(output_size)}

        # 生成层
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'], conv_param['stride'], conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

        self.last_layer = SoftmaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):
        """求损失函数
        参数x是输入数据、t是教师标签
        """
        y = self.predict(x)
        return self.last_layer.forward(y, t)

    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1 : t = np.argmax(t, axis=1)

        acc = 0.0

        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i*batch_size:(i+1)*batch_size]
            tt = t[i*batch_size:(i+1)*batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt)

        return acc / x.shape[0]

    def numerical_gradient(self, x, t):
        """求梯度(数值微分)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']...是各层的权重
            grads['b1']、grads['b2']...是各层的偏置
        """
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])

        return grads

    def gradient(self, x, t):
        """求梯度(误差反向传播法)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']...是各层的权重
            grads['b1']、grads['b2']...是各层的偏置
        """
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {'W1': self.layers['Conv1'].dW,
                 'b1': self.layers['Conv1'].db,
                 'W2': self.layers['Affine1'].dW,
                 'b2': self.layers['Affine1'].db,
                 'W3': self.layers['Affine2'].dW,
                 'b3': self.layers['Affine2'].db}

        return grads

    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i+1)]
            self.layers[key].b = self.params['b' + str(i+1)]

现在,使用这个SimpleConvNet学习MNIST数据集。如果使用MNIST数据集训练SimpleConvNet,则训练数据的识别率为99.82%,测试数据的识别率为98.96%(每次学习的识别精度都会发生一些误差)。测试数据的识别率大约为99%,就小型网络来说,这是一个非常高的识别率。

CNN学习MNIST实现手写数字识别_第2张图片
CNN学习MNIST实现手写数字识别_第3张图片

学习MNIST数据集:

# coding: utf-8
import sys, os

sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from simple_convnet import SimpleConvNet
from common.trainer import Trainer

# 读入数据
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

# 处理花费时间较长的情况下减少数据 
# x_train, t_train = x_train[:5000], t_train[:5000]
# x_test, t_test = x_test[:1000], t_test[:1000]

max_epochs = 20

network = SimpleConvNet(input_dim=(1, 28, 28),
                        conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                        hidden_size=100, output_size=10, weight_init_std=0.01)

trainer = Trainer(network, x_train, t_train, x_test, t_test,
                  epochs=max_epochs, mini_batch_size=100,
                  optimizer='Adam', optimizer_param={'lr': 0.001},
                  evaluate_sample_num_per_epoch=1000)
trainer.train()

# 保存参数
network.save_params("params.pkl")
print("Saved Network Parameters!")

# 绘制图形
markers = {'train': 'o', 'test': 's'}
x = np.arange(max_epochs)
plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)
plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()

测试泛化能力

训练好的参数总得拿出来用一用吧,对于mnist测试数据和训练数据直接导入参数文件,推理(识别)就行了。要注意的是格式NCHW,N张C通道高为H宽为W的图片,我们各取10张。

def train_img():
    (x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)
    t = 10
    x_train_sample, t_train_sample = x_train[:t], t_train[:t]

    network = SimpleConvNet(input_dim=(1, 28, 28),
                            conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                            hidden_size=100, output_size=10, weight_init_std=0.01)
    network.load_params("params.pkl")

    a = network.predict(x_train_sample)
    for i in range(0, 10):
        print("测试集第", i, "张图片预测值:", np.argmax(a[i]), "标签值:", t_train_sample[i])


def test_img():
    (x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)
    t = 10
    x_test_sample, t_test_sample = x_test[:t], t_test[:t]
    network = SimpleConvNet(input_dim=(1, 28, 28),
                            conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                            hidden_size=100, output_size=10, weight_init_std=0.01)
    network.load_params("params.pkl")

    a = network.predict(x_test_sample)
    for i in range(0, 10):
        print("测试集第", i, "张图片预测值:", np.argmax(a[i]), "标签值:", t_test_sample[i])

为什么不测试一下自己手写的呢?还是手写的那10个数字。

CNN学习MNIST实现手写数字识别_第4张图片

这里顺便直接把图像处理封装成一个函数:

def deal_img(filename):
    kernel_size = (3, 3)
    img = cv2.imread(filename)
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 从RBGBGR颜色空间转换到灰度空间
    ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)  # 像素值>threshold设为255 其他0
    kernel = np.ones(kernel_size, np.uint8)
    thresh2 = cv2.erode(thresh2, kernel, iterations=1)
    ret, thresh2 = cv2.threshold(thresh2, 127, 255, cv2.THRESH_BINARY_INV)  # 像素值>threshold设为0 其他255
    thresh2 = cv2.resize(thresh2, (28, 28), fx=1, fy=1)  # 图片缩放 11缩放
    image_out = thresh2.reshape(1, 1, thresh2.shape[0], thresh2.shape[1])
    return image_out


def else_img():
    network = SimpleConvNet(input_dim=(1, 28, 28),
                            conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                            hidden_size=100, output_size=10, weight_init_std=0.01)
    network.load_params("params.pkl")

    network.load_params("params.pkl")
    x = ["0.png", "1.png", "2.png", "3.png", "4.png", "5.png", "6.png", "7.png", "8.png", "9.png"]
    t = np.arange(10)
    for i in range(10):
        image_out = deal_img(x[i])
        a = network.predict(image_out)
        print("手写集第", i, "张图片预测值:", np.argmax(a), "标签值:", t[i])

最后的识别结果如下,手写的10个数字还是错了3个,这里图像处理的问题应该占了很大一部分原因了。到这里我猛然醒悟,如果我在黑色背景下写白字不就直接略过图像处理这一步了吗?

CNN学习MNIST实现手写数字识别_第5张图片

重新写了10个数字:

CNN学习MNIST实现手写数字识别_第6张图片

CNN学习MNIST实现手写数字识别_第7张图片

果然,全部识别出来。图像并不是不用处理了,只是不那么麻烦了,图像还是要处理成1通道:

def deal_img2(filename):
    img = cv2.imread(filename)
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 从RBGBGR颜色空间转换到灰度空间
    thresh2 = cv2.resize(img_gray, (28, 28), fx=1, fy=1)  # 图片缩放 11缩放
    image_out = thresh2.reshape(1, 1, thresh2.shape[0], thresh2.shape[1])
    return image_out

完整程序如下:

# coding: utf-8
import sys, os

import cv2

sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from simple_convnet import SimpleConvNet
from common.trainer import Trainer
from PIL import Image


def img_show(img):
    pil_img = Image.fromarray(np.uint8(img))
    pil_img.show()


def train_img():
    (x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)
    t = 10
    x_train_sample, t_train_sample = x_train[:t], t_train[:t]

    network = SimpleConvNet(input_dim=(1, 28, 28),
                            conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                            hidden_size=100, output_size=10, weight_init_std=0.01)
    network.load_params("params.pkl")

    a = network.predict(x_train_sample)
    for i in range(0, 10):
        print("训练集第", i, "张图片预测值:", np.argmax(a[i]), "标签值:", t_train_sample[i])


def test_img():
    (x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)
    t = 10
    x_test_sample, t_test_sample = x_test[:t], t_test[:t]
    network = SimpleConvNet(input_dim=(1, 28, 28),
                            conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                            hidden_size=100, output_size=10, weight_init_std=0.01)
    network.load_params("params.pkl")

    a = network.predict(x_test_sample)
    for i in range(0, 10):
        print("测试集第", i, "张图片预测值:", np.argmax(a[i]), "标签值:", t_test_sample[i])


def deal_img(filename):
    kernel_size = (3, 3)
    img = cv2.imread(filename)
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 从RBGBGR颜色空间转换到灰度空间
    ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)  # 像素值>threshold设为255 其他0
    kernel = np.ones(kernel_size, np.uint8)
    thresh2 = cv2.erode(thresh2, kernel, iterations=1)
    ret, thresh2 = cv2.threshold(thresh2, 127, 255, cv2.THRESH_BINARY_INV)  # 像素值>threshold设为0 其他255
    thresh2 = cv2.resize(thresh2, (28, 28), fx=1, fy=1)  # 图片缩放 11缩放
    image_out = thresh2.reshape(1, 1, thresh2.shape[0], thresh2.shape[1])
    return image_out


def deal_img2(filename):
    img = cv2.imread(filename)
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 从RBGBGR颜色空间转换到灰度空间
    thresh2 = cv2.resize(img_gray, (28, 28), fx=1, fy=1)  # 图片缩放 11缩放
    image_out = thresh2.reshape(1, 1, thresh2.shape[0], thresh2.shape[1])
    return image_out


def else_img():
    network = SimpleConvNet(input_dim=(1, 28, 28),
                            conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                            hidden_size=100, output_size=10, weight_init_std=0.01)
    network.load_params("params.pkl")

    network.load_params("params.pkl")
    x = ["0.png", "1.png", "2.png", "3.png", "4.png", "5.png", "6.png", "7.png", "8.png", "9.png"]
    x1 = ["10.png", "11.png", "12.png", "13.png", "14.png", "15.png", "16.png", "17.png", "18.png", "19.png"]
    t = np.arange(10)
    for i in range(10):
        image_out = deal_img2(x1[i])
        a = network.predict(image_out)
        print("手写集第", i, "张图片预测值:", np.argmax(a), "标签值:", t[i])


train_img()
test_img()
else_img()

你可能感兴趣的:(基于python的深度学习入门,cnn,学习,深度学习)