电子科技大学830数字图像处理真题 第三章 灰度变换与空间滤波

电子科技大学830数字图像处理真题 第三章 灰度变换与空间滤波_第1张图片电子科技大学830数字图像处理真题 第三章 灰度变换与空间滤波_第2张图片电子科技大学830数字图像处理真题 第三章 灰度变换与空间滤波_第3张图片电子科技大学830数字图像处理真题 第三章 灰度变换与空间滤波_第4张图片电子科技大学830数字图像处理真题 第三章 灰度变换与空间滤波_第5张图片电子科技大学830数字图像处理真题 第三章 灰度变换与空间滤波_第6张图片

第三章 灰度变换与空间滤波

  1. 为什么直方图均衡化并不会产生具有平坦直方图的图像?(2015)

由于直方图均衡化是由连续概率密度函数推导而来,而离散的情况的直方图只是对概率密度函数的近似。在直方图均衡化的过程中,进行了对非整数数值的四舍五入,导致了直方图均衡化并不会产生完全平坦的直方图。但均衡化后的直方图比原直方图的分布均匀很多,增大了图像的对比度。

  1. 简述直方图均衡化和规定化的区别与联系。(2021)

联系:直方图均衡化和直方图规定化都是为了调整图像的灰度分布,增加灰度的动态范围,从而达到增强图像对比对的效果,并且直方图均衡化属于直方图规定化的一种特殊情况。

区别:直方图均衡化可以自动增强整个图像的对比度(优点),但具体增强效果不容易控制(缺点)。而直方图规定化是选择性的增强某个灰度范围的对比度,通过变换直方图将直方图变为某个特定的形状。

  1. 对一幅图像进行直方图均衡化。(2015)

直方图均衡化步骤:(1)计算直方图

  1. 计算灰度分布频率Pr(k)
  2. 计算灰度累计频率Sk
  3. 将Sk归一化(Sk*(L-1)),找到灰度级之间的映射关系
  4. 根据映射关系,输出均衡化后直方图

  1. 证明直方图均衡化函数就是图像的累积直方图。(2010)

重要变换函数:S=T(r)=(L-1)∫Pr(w)dw

变换前后概率密度关系:Ps(s)=Pr(r)|dr/ds|

  1. 已知两幅灰度图像F和G,求出F匹配G后的直方图。(2012)

直方图规定化步骤:(1)计算F的直方图均衡化

(2)计算G的直方图规定化,找到逆映射规则

(3)计算F到G的映射规则,根据映射关系,输出规定化后直方图

  1. 根据直方图的分布判断水果的类型。(2018)

判断物体步骤:(1)找到灰度分割阈值,对物体和背景进行分割

             (2)对物体所占像素面积进行估计

  1. 给定一幅图像的概率密度,计算变换函数s=T(r),使得变换后的图像具有指定的概率密度。(2012)

变换前后概率密度关系:Ps(s)=Pr(r)|dr/ds|  即有∫Ps(s)ds=∫Pr(r)dr

  1. 给定一幅灰度图像I,请求出将其变换为均值为U,方差为D的图像J所需的线性变换函数。(2012)

根据期望和方差的计算式,联系变换前后的均值和方差,得到线性变换的系数

  1. 将高频加强和直方图均衡相结合是得到边缘锐化和对比度增强的有效方法。上述两个操作的先后顺序对结果

有影响吗?为什么?(2014)

有影响,应该先进行高频加强,再进行直方图均衡化。

高频加强是针对高通滤波后的图像整体偏暗,因此通过提高图像的平均灰度,使得图像的视觉可辨性提高,再通过直方图均衡化将图像的窄带动态范围变为宽带动态范围,从而达到提高对比度的效果。

如果先进行直方图均衡化,再进行高频加强,那么由于图像先被漂白,在进行高通滤波,得到的图像边缘不突出,图像的对比度也较差。

  1. 使用分段线性变换将图像灰度范围进行调整。(2015)

注意坐标带入时的值,例如将灰度范围(0,20)拉伸到(0,30)时,对于线性变换方程y=ax+b,第一个点坐标是(0,0),第二个点坐标是(20,30)。第一个方程中:x=0,y=0;第二个方程中,x=20,y=30

  1. 求出一个矩阵和另一个矩阵的卷积结果。(2019)  

二维卷积的第一步是将卷积核进行180度翻转,即将卷积核上下交换,左右交换各一次。

当二维卷积核模板是偶数时,用右下的元素对卷积图像进行对齐。

  1. 二维滤波可以分成两次一维滤波来完成吗?算术均值滤波器分离的两个一维模板是什么?分离处理有什么好处? (2014)

二维滤波可以分成两次一维滤波完成,3x3的算术均值滤波器可以分离成两个一维模板:1/3[1,1,1]和1/3[1,1,1]^T

分离处理的好处在于可以减小滤波的计算量,从而提高处理效率。

  1. 对一幅图像进行不同尺寸的领域平均滤波处理,请定性描述图像如何变化。(2014)

白条边界根据不同尺寸变化情况不同...

  1. 非锐化掩蔽实现图像增强的基本原理是什么?画出各个中间步骤的结果。(2015)

  1. 提出一种将拉普拉斯算子和梯度算子结合起来使用的方法,从而达到使图像锐化的目的。(2019)

使用拉普拉斯算子突出图像的细节,得到锐化图像a;使用梯度算子如sobel算子突出图像中的边缘细节,得到锐化图像b。将图像a和图像b相乘得到掩蔽图像c。将图像c加回到原图像上进而得到锐化处理后的图像。

  1. 证明将一幅图像减去其相应的拉普拉斯图像,等同于对图像做非锐化掩蔽处理。(2021)

你可能感兴趣的:(学习,图像处理)