HIVE--入门小结

Hive是基于Hadoop的一个数据仓库,可以将结构化的数据文件映射为一张表,并提供类sql查询功能,Hive底层将sql语句转化为mapreduce任务运行。相对于用java代码编写mapreduce来说,Hive的优势明显:快速开发,人员成本低,可扩展性(自由扩展集群规模),延展性(支持自定义函数)。
Hive的构架:
HIVE--入门小结_第1张图片
Hive提供了三种用户接口:CLI、HWI和客户端。客户端是使用JDBC驱动通过thrift,远程操作Hive。HWI即提供Web界面远程访问Hive。但是最常见的使用方式还是使用CLI方式。(在linux终端操作Hive)
Hive有三种安装方式:
1、内嵌模式(元数据保村在内嵌的derby种,允许一个会话链接,尝试多个会话链接时会报错,不适合开发环境)
2、本地模式(本地安装mysql 替代derby存储元数据)
3、远程模式(远程安装mysql 替代derby存储元数据)
安装Hive:(本地模式)
首先Hive的安装是在Hadoop集群正常安装的基础上,并且集群启动
安装Hive之前我们要先安装mysql,
查看是否安装过mysql:rpm -qa|grep mysql*
查看有没有安装包:yum list mysql*
安装mysql客户端:yum install -y mysql
安装服务器端:yum install -y mysql-server
yum install -y mysql-devel
启动数据库 service mysqld start或者/etc/init.d/mysqld start
创建hadoop用户并赋予权限:

  mysql>grant all on *.* to hadoop@'%' identified by 'hadoop';
  mysql>grant all on *.* to hadoop@'localhost' identified by 'hadoop';
  mysql>grant all on *.* to hadoop@'master' identified by 'hadoop';
  mysql>flush privileges;
  

然后在Hive官网上下载需要的版本,hive.apache.org archive.apache.org
解压:tar -zxvf apache-hive-1.2.1-bin.tar.gz
配置:

cd /apache-hive-1.2.1-bin/conf/  vim hive-site.xml
    <?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <property>
        <name>hive.metastore.local</name>
        <value>true</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
         <value>jdbc:mysql://master:3306/hive?characterEncoding=UTF-8</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>hadoop</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>hadoop</value>
    </property>
</configuration>

复制依赖包:cp mysql-connector-java-5.1.43-bin.jar apache-hive-1.2.1-bin/lib/
配置环境变量:

export HIVE_HOME=$PWD/apache-hive-1.2.1-bin
export PATH=$PATH:$HIVE_HOME/bin

启动hive:hive
hive中可以运行shell命令:! shell命令
在这里插入图片描述
HIVE--入门小结_第2张图片
hive中可以运行hadoop命令:HIVE--入门小结_第3张图片
hive中的数据类型:
原子数据类型:TINYINT SMALLINT INT BIGINT FLOAT DOUBLE BOOLEAN STRING
复杂数据类型:STRUCT MAP ARRAY
hive的使用:
建表语句:
DDL:
创建内部表:

create table mytable(
id int, 
name string) 
row format delimited fields terminated by '\t' stored as textfile;
常见

外部表:关键字 external

create external table mytable2(
	id int, 
	name string)
row format delimited fields terminated by '\t' location '/user/hive/warehouse/mytable2';

创建分区表:分区字段要写在partiton by()

create table mytable3(
	id int, 
	name string)
partitioned by(sex string) row format delimited fields terminated by '\t'stored as textfile;

静态分区插入数据

load data local inpath '/root/hivedata/boy.txt' overwrite into table mytable3 partition(sex='boy');

增加分区:

alter table mytable3 add partition (sex='unknown') location '/user/hive/warehouse/mytable3/sex=unknown';

删除分区:alter table mytable3 drop if exists partition(sex='unknown');
分区表默认为静态分区,可转换为自动套分区
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;

给分区表灌入数据:

insert into table mytable3 partition (sex) select id,name,'boy' from student_mdf;

查询表分区:show partitions mytable3;
查询分区表数据:select * from mytable3;
查询表结构:desc mytable3;
DML:
重命名表:alter table student rename to student_mdf
增加列:alter table student_mdf add columns (sex string);
修改列名:alter table student_mdf change sex gender string;
替换列结构:alter table student_mdf replace columns (id string, name string);
装载数据:(本地数据)load data local inpath ‘/home/lym/zs.txt’ overwrite into student_mdf;
(HDFS数据)load data inpath ‘/zs.txt’ into table student_mdf;
插入一条数据:insert into table student_mdf values(‘1’,‘zhangsan’);
创建表接收查询结果:create table mytable5 as select id, name from mytable3;
导出数据:(导出到本地)insert overwrite local directory ‘/root/hivedata/mytable5.txt’ select * from mytable5;
(导出到HDFS)
insert overwrite directory ‘hdfs://master:9000/user/hive/warehouse/mytable5_load’ select * from mytable5;
数据查询:
select * from mytable3; 查询全表
select uid,uname from student; 查询学生表中的学生姓名与学号字段
select uname,count(*) from student group by uname; 统计学生表中每个名字的个数
常用的功能还有 having、order by、sort by、distribute by、cluster by;等等
关联查询中有
内连接:将符合两边连接条件的数据查询出来
select * from t_a a inner join t_b b on a.id=b.id;
左外连接:以左表数据为匹配标准,右边若匹配不上则数据显示null
select * from t_a a left join t_b b on a.id=b.id;
右外连接:与左外连接相反
select * from t_a a right join t_b b on a.id=b.id;
左半连接:左半连接会返回左边表的记录,前提是其记录对于右边表满足on语句中的判定条件。
select * from t_a a left semi join t_b b on a.id=b.id;
全连接(full outer join):
select * from t_a a full join t_b b on a.id=b.id;
in/exists关键字(1.2.1之后新特性):效果等同于left semi join
select * from t_a a where a.id in (select id from t_b);
select * from t_a a where exists (select * from t_b b where a.id = b.id);

shell操作Hive指令:
-e:从命令行执行指定的HQL:
HIVE--入门小结_第4张图片

-f:执行HQL脚本
-v:输出执行的HQL语句到控制台
HIVE--入门小结_第5张图片
内置函数

查看内置函数:show functions;
显示函数的详细信息:DESC FUNCTION abs;
重要常用内置函数:sum()–求和 count()–求数据量 avg()–求平均值
distinct–去重 min–求最小值 max–求最大值

自定义函数:略。

Hive快速入门(全面):
https://blog.csdn.net/albertfly/article/details/81286938

你可能感兴趣的:(HIVE,SQL,hive,mysql,大数据,数据库)