- 视觉Transformer架构的前沿优化技术与高效部署
点我头像干啥
Ai深度学习神经网络计算机视觉
引言近年来,Transformer架构在自然语言处理(NLP)领域取得了巨大成功,逐渐成为深度学习的主流模型之一。随着研究的深入,Transformer架构也开始在计算机视觉领域崭露头角,尤其是在图像分类、目标检测和图像生成等任务中表现出色。然而,视觉Transformer(VisionTransformer,ViT)在计算效率和内存消耗方面面临巨大挑战,尤其是在处理高分辨率图像时。为了应对这些挑
- 数据集 VisDrone-Dataset 无人机检测跟踪数据集 >> DataBall
Xian-HHappy
DataBall数据集合(计算机视觉)-数据也可如此美好无人机
开源数据集VisDrone-Dataset无人机检测跟踪数据集-机器视觉目标跟踪人工智能深度学习无人机或通用无人驾驶飞行器(UAV)配备相机后,已被迅速部署到包括农业、航拍、快速递送和监视在内的广泛应用中。因此,自动理解从这些平台收集的视觉数据变得非常迫切,这使得计算机视觉与无人机的联系越来越紧密。我们很高兴地推出一个大规模的基准测试,为各种重要的计算机视觉任务提供精心注释的真实数据,名为VisD
- 2024最新 无人机 数据集(12-06已更新)
数据猎手小k
无人机
一、无人机的研究背景无人机技术的发展经历了从最初的遥控靶机到现代多功能无人机的转变。随着电子技术、通信技术、导航技术以及人工智能技术的进步,无人机的性能得到了显著提升,应用领域也不断拓展。特别是在AI技术的加持下,无人机的自主飞行能力、智能决策能力以及数据处理能力都有了质的飞跃。二、无人机的应用:在AI时代,无人机的应用领域得到了极大的扩展,技术的进步使得无人机在多个行业中发挥着越来越重要的作用。
- SCI一区级 | Matlab实现DBO-CNN-LSTM-Mutilhead-Attention蜣螂算法优化卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测
matlab科研社
神经网络matlabcnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。内容介绍1.引言温度预测在多个领域至关重要,例如气象预报、能源管理和农业生产。传统方法通常基于线性模型或统计方法,但这些方法在处理非线性时间序列数据时存在局限性。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)
- 自动驾驶核心技术简介
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
自动驾驶核心技术简介关键词:感知系统、决策系统、控制系统、人工智能、计算机视觉、深度学习、V2X通信摘要:本文全面介绍了自动驾驶的核心技术,包括感知、决策和控制三大系统。文章深入探讨了各系统的关键组成部分、工作原理和最新技术进展。同时,本文还分析了自动驾驶技术在实际应用中面临的挑战,以及未来的发展趋势。通过详细的技术讲解、代码示例和实际案例,为读者提供了全面而深入的自动驾驶技术概览。1.背景介绍1
- DeepSeek-R2模型传闻解析:技术突破与官方辟谣背后的AI竞赛
每天做一点改变
人工智能
2025年3月,人工智能领域因一则传闻掀起波澜:中国AI公司深度求索(DeepSeek)或将于3月17日提前发布下一代模型DeepSeek-R2。尽管官方已紧急辟谣,但技术细节和市场反应仍值得深入探讨。一、传闻中的技术突破多家媒体报道称,DeepSeek-R2在以下领域实现显著提升:编程能力:可高效生成高质量代码,支持算法优化与复杂软件开发,降低开发者负担。多语言推理:突破英语限制,支持跨语言复杂
- 张量运算:人工智能的数学基石
猿享天开
人工智能数学基础专讲人工智能
博主简介:CSDN博客专家、全栈领域优质创作者、高级开发工程师、高级信息系统项目管理师、系统架构师,数学与应用数学专业,10年以上多种混合语言开发经验,从事PACS医学影像开发领域多年,熟悉DICOM协议及其应用开发技术。我的技能涵盖了多种编程语言和技术框架:作为高级C/C++与C#开发工程师,擅长Windows系统下的.NET及C++开发技术,尤其精通MFC、DLL动态链接库、WinForm、W
- 人工智能发展简史:从理论萌芽到大模型时代
meisongqing
人工智能大模型
一、人工智能的起源与早期探索(1940s-1950s)理论基础奠基1943年:神经科学家麦卡洛克(WarrenMcCulloch)与数学家皮茨(WalterPitts)提出“M-P神经元模型”,首次尝试用数学模型模拟人脑神经元活动。1950年:艾伦·图灵(AlanTuring)发表论文《计算机器与智能》,提出“图灵测试”,定义机器智能的核心标准。1956年:达特茅斯会议召开,“人工智能”(AI)一
- 计算机视觉算法实战——手术导航:技术、应用与未来
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.手术导航中的计算机视觉:领域介绍计算机视觉在手术导航领域的应用代表了现代医学与人工智能技术的完美结合,正在彻底改变外科手术的方式。手术导航系统通过将医学影像、实时传感器数据和计算机视觉算法相结合,为外科医生提供了前所未有的精确性和可视化能力,使复杂的手术操作变得更加安全、可控。传统
- 计算机视觉算法实战——病变检测:从原理到应用
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能目标检测
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.计算机视觉在病变检测领域的概述计算机视觉在医疗影像分析中的应用已经成为人工智能最具前景的领域之一。病变检测作为其中的核心任务,旨在自动识别和定位医学图像中的异常区域,为医生提供辅助诊断工具。这一技术可以显著提高诊断效率,减少人为误差,并在早期疾病筛查中发挥关键作用。医学病变检测与常
- 深度学习模型的压缩与轻量化技术
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习,模型压缩,轻量化,效率,可部署性,精度1.背景介绍深度学习在图像识别、自然语言处理、语音识别等领域取得了突破性的进展,但其模型规模庞大,计算资源需求高,部署成本高昂,这限制了其在移动设备、嵌入式系统等资源受限环境中的应用。因此,深度学习模型的压缩与轻量化技术成为一个重要的研究方向。模型压缩是指通过减少模型参数数量、减少模型层数或减少模型计算量来减小模型规模,从而降低模型存储和计算成本。轻
- TensorFlow-MNIST手写数字分类
Enougme
TensorFlowtensorflow分类人工智能
TensorFlow是一个功能强大的深度学习框架,可以用来构建、训练和部署机器学习模型。主要作用于:构建神经网络模型(回归、分类、生成模型等)。进行数值计算,并提供GPU加速。实现自动梯度求导(如反向传播训练)。应用机器学习模型进行预测。数据准备fromtensorflow.keras.datasetsimportmnist#加载数据集(已划分为训练集和测试集)(x_train,y_train),
- python-常用的深度学习框架
Enougme
TensorFlowpython深度学习开发语言
Python是当前深度学习与机器学习领域的主流编程语言,其丰富的生态系统和多样化的框架使得构建深度学习模型变得非常高效。以下是一些主流的深度学习框架,以及每个框架的特点和适用场景。1.PyTorch特点:动态计算图:支持动态构建和修改计算图,调试体验好,灵活性强。社区生态丰富:拥有大量教程、开源代码和第三方工具支持。广泛应用:深受研究人员和实验开发者的喜爱,也适用于生产环境。TorchScript
- 临床报告深度学习总结
Trank-Lw
深度学习人工智能
你对深度学习模型训练有哪些优化策略?在深度学习模型训练中,优化策略是提升模型性能和效率的关键。以下是一些常见的优化策略:1.数据优化数据预处理:对数据进行清洗、归一化、标准化等操作,以减少噪声并提高模型的收敛速度。数据增强:通过旋转、裁剪、翻转等方式增加数据多样性,尤其在图像处理中效果显著。数据采样:采用过采样或欠采样技术解决数据不平衡问题。2.模型优化模型架构选择:根据任务需求选择合适的模型架构
- 图像多分类的人工智能
love_c++
人工智能分类数据挖掘
当涉及到图像多分类任务,通常会使用深度学习模型,如卷积神经网络(ConvolutionalNeuralNetwork,CNN)。以下是一个使用Python编程语言和TensorFlow库来构建一个简单的图像多分类模型的例子:#导入所需的库importtensorflowastffromtensorflow.kerasimportlayers,models,datasetsimportmatplot
- Stable Diffusion进行图像生成
月月猿java
人工智能
使用StableDiffusion进行图像生成通常涉及以下步骤:安装依赖库:首先,你需要安装必要的Python库,如PyTorch、torchvision、diffusers和transformers等。这些库将为你提供深度学习框架、图像处理工具和StableDiffusion模型的接口。获取预训练模型:StableDiffusion模型通常很大,因此你需要从可靠的来源下载预训练模型。Huggin
- 基于LLM的Agent框架全面比较分析:MGX(MetaGPT X)、AutoGen、OpenHands与秒哒(MiaoDa)
由数入道
人工智能智能体大语言模型智能体框架
摘要本文对当前四种领先的基于LLM的Agent框架——MGX(MetaGPTX)、AutoGen、OpenHands和秒哒(MiaoDa)进行了全面比较分析。这些框架代表了人工智能领域在多智能体协作系统方面的最新进展,各自采用了独特的方法来解决复杂任务自动化问题。通过深入考察每个框架的核心架构、关键特性、目标用例、生态系统和发展前景,本分析旨在为技术决策者、开发者和研究人员提供详尽的参考依据,帮助
- 松灵Cobot Magic&ARIO,打造具身智能百万规模标准化数据集
BFT白芙堂
机器学习ARIO数据集硬件平台CobotMagic机器人
具身人工智能开发的三大主要挑战:数据格式不统一:多源异构数据整合困难,训练资源利用率低。场景多样性不足:现有数据集覆盖场景有限,模型泛化能力受限。高质量数据稀缺:标注数据不足,难以满足大规模训练需求,制约性能提升。松灵CobotMagic:真实场景数据采集的核心平台为应对以上挑战,南科大提出来ARIO(AllRobotsInOne)数据集,松灵CobotMagic凭借以下优势成为硬件平台首选:硬件
- 【transformer理论+实战(三)】必要的 Pytorch 知识
造夢先森
AI大模型transformerpytorch深度学习
【Transformer理论+实战(三)】必要的Pytorch知识【Transformer理论+实战(二)】Lora本地微调实战--deepseek-r1蒸馏模型【Transformer理论+实战(一)】Transformer&LLaMA&Lora介绍文章目录Pytorch基础张量(Tensor)拼接与拆分调整形状索引与切片降维与升维张量计算Pytorch由Facebook人工智能研究院于2017
- Google开源机器学习框架TensorFlow SegFormer优化
深海水
人工智能行业发展IT应用探讨tensorflow人工智能python机器训练机器学习深度学习ai
一、SegFormer的TensorRT加速优化TensorRT是NVIDIA推出的深度学习推理加速库,可以显著提高SegFormer在GPU上的推理速度。1.TensorRT加速流程目标转换SegFormer为TensorRT格式优化FP16/INT8计算提升推理速度(FPS)主要步骤导出TensorFlow模型转换为ONNX格式使用TensorRT进行优化运行TensorRT推理2.代码实现(
- 主流大模型架构
Jeremg
架构
什么是大模型架构大模型架构是指用于构建大规模人工智能模型的特定结构和设计模式,旨在处理海量数据、学习复杂的模式和关系,并实现强大的语言理解、生成、图像识别、语音处理等多种智能任务。以下是一些常见的大模型架构的特点、组成和应用:特点大规模参数:包含大量的参数,通常数以亿计甚至更多,以学习丰富的知识和模式,例如GPT-3拥有1750亿个参数。强大的表示能力:能够对各种类型的数据进行高效的表示和处理,捕
- 人工智能领域毕业设计选题题目合集:课题指导 选题建议
HaiLang_IT
毕业设计选题毕业设计人工智能机器学习
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了人工智能专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇
- 向量数据库的新浪潮:支持向量及标量查询的解决方案
一休哥助手
数据库数据库向量数据库
向量数据库的新浪潮:支持向量及标量查询的解决方案在数据密集型的应用场景中,向量数据库已经成为了一种不可或缺的技术。尤其是在机器学习和人工智能领域,向量数据库能够高效地处理高维数据,为相似性搜索、推荐系统等提供强大支持。然而,随着数据的多样化,单纯的向量搜索已经不能满足所有的需求。因此,支持向量查询同时也支持标量查询(固定条件过滤)的向量数据库成为了新的焦点。本文将探讨几种这样的数据库,并进行比较。
- Spring Boot + Spring AI快速体验
m0_74825074
面试学习路线阿里巴巴springspringboot人工智能
SpringAI快速体验1什么是SpringAI主要功能2快速开始2.1版本说明2.2配置文件2.3pom依赖2.3.1springmaven仓库2.3.2核心依赖2.4定义ChatClient2.5启动类2.6测试3参考链接1什么是SpringAISpringAI是Spring的一个子项目,是Spring专门面向于AI的应用框架。SpringAI项目旨在简化整合人工智能功能的应用程序开发,避免不
- 什么是 Embedding?——从直觉到应用的全面解读
忍者算法
人工智能深度学习神经网络机器学习
什么是Embedding?——从直觉到应用的全面解读在机器学习和深度学习的世界里,我们经常会听到“Embedding”这个词。它是深度学习中最核心的概念之一,尤其在自然语言处理(NLP)和推荐系统中应用广泛。但很多初学者对Embedding的理解可能只是:“它是把一个东西转换成数字的方式。”这种解释虽然没错,但过于简略,难以真正理解Embedding的作用。这篇文章将用最直观的方式,带你深入理解E
- 飞桨Paddle Inference模型转ONNX模型的方法
Sweet锦
AIpaddlepaddle人工智能AI编程
ONNX是个好东西,其全称OpenNeuralNetworkExchange,是一种用于表示和交换深度学习模型的开放标准格式。由Microsoft和Facebook在2017年共同推出的一个开放标准,旨在促进不同深度学习框架之间的互操作性,并采用相同格式存储模型数据。ONNX有诸多优势,简直让人爱不释手呀。以下简单列举几个:在不同深度学习框架(如PaddlePaddle、PyTorch、Tenso
- 智能驱动的视频未来:蓝耘MaaS平海螺AI技术的革新与应用
荣华富贵8
程序员的知识储备1程序员的知识储备2程序员的知识储备3经验分享linux科技运维性能优化
在当今数字化浪潮中,视频技术与人工智能的深度融合正以前所未有的速度改变各行各业。蓝耘MaaS平海螺AI技术凭借其突破性的架构和前沿算法,正在为智慧城市、自动驾驶、智能监控以及新媒体内容生成等领域带来革命性变革。本文将探讨这一前沿技术的核心原理、实现方法以及未来的应用前景,并通过经典代码示例展示其实际实现。技术背景与发展趋势随着深度学习、边缘计算和大数据分析技术的不断成熟,视频处理正从传统的离线批量
- 机器学习入门第三集——如何完整实现一次模型训练
梯度寻优者_超
机器学习人工智能python算法大数据回归数据分析
提示:如何完整的从数据导入到最后模型训练以及模型保存,本集进行介绍。文章目录上集回顾一、数据集是什么?二、完整训练过程1.导入数据2.数据集划分3.模型训练4.模型保存以及加载总结下集预告上集回顾提示:上集已经对机器学习基础知识分类常用算法等进行了描述,这集开始是如何完整训练模型,前两集已经介绍了机器学习的通俗解释,已经常见分类,还有机器学习深度学习强化学习的关系和区别。有想看的小伙伴可以翻我主页
- 【人工智能】图文详解深度学习中的卷积神经网络(CNN)
AI天才研究院
深度学习实战DeepSeekR1&大数据AI人工智能大模型深度学习人工智能cnn神经网络计算机视觉
【人工智能】图文详解深度学习中的卷积神经网络(CNN)概念和原理为什么要使用卷积神经网络?卷积神经网络简介卷积神经网络的数学公式池化操作:全连接层:激活函数卷积神经网络的C++实现示例代码应用场景自动驾驶影像物体识别医疗影像诊断附:计算机视觉中几种经典的网络结构概念和原理为什么要使用卷积神经网络?在讲述原理之前,我们先来解释为什么我们在图像及视频等等领域的机器学习中要使用CNN。我们都知道,使用多
- Milvus 在多模态数据(图像、文本、音频)向量搜索中的应用
莫比乌斯之梦
技术#Milvusmilvus音视频数据库向量数据库多模态数据
随着人工智能和深度学习的发展,多模态数据检索逐渐成为热门技术,广泛应用于图像搜索、语音识别、跨模态检索、推荐系统等领域。传统的基于关键词或规则的检索方式已经难以满足智能应用的需求,因此,基于向量搜索的近似最近邻(ANN)检索成为主流方案。Milvus作为一款开源的向量数据库,可以高效地存储和检索图像、文本、音频等多模态数据的向量表示。本文将介绍Milvus如何处理多模态数据的向量搜索,以及如何构建
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {