基础鸽群算法的具体原理参考,我的博客:https://blog.csdn.net/u011835903/article/details/109774886
模拟退火 [ 4 ] { }^{[4]} [4] 是模拟物体从高温降为低温的过程, 根据 Metropolis 准则, 由于降温操作, 物体从状态 i \mathrm{i} i 变为状态 j \mathrm{j} j, 能 量也从 E ( i ) E(i) E(i) 变为 E ( j ) E(j) E(j), 能量的变化量为 Δ E = E ( i ) − E ( j ) \Delta E=E(i)-E(j) ΔE=E(i)−E(j), 当 Δ E > 0 \Delta E>0 ΔE>0, 接受变化的新状态; 当 Δ E < 0 \Delta E<0 ΔE<0, 以一定的概率接 受当前的新状态。当概率 p = exp ( E ( i ) − E ( j ) / T ) > p=\exp (E(i)-E(j) / T)> p=exp(E(i)−E(j)/T)> rand 时, 接受 当前的新状态, 否则保留旧的状态。其中, T = T ⋅ \mathrm{T}=\mathrm{T} \cdot T=T⋅ decayscale, decayscale 为退火系数。
模拟退火鸽群优化算法(SAPIO ) 是以鸽群优化算法为主 流程, 加人了模拟退火机制, 对每个鸽子的位置进行局部寻优, 使算法在接受较优解的同时, 以一定的概率接受较差解, 能够 使算法跳出局部最优。随着物体的降温, 能量逐渐趋于稳定状 态,算法达到全局最优。
在鸽群优化算法中, 前期需要较大的速度, 有利于全局搜 索, 能较快地定位最优解的大致位置。随着惯性权重的减小, 速度减小, 能够进行精细的局部搜索和得到更精确的解, 该方 法加快了算法的收敛速度, 提高了算法性能 [ 5 ] { }^{[5]} [5] 。惯性权重的调 节和速度公式如下:
w = w start − w start − w end T 1 × t (6) w=w_{\text {start }}-\frac{w_{\text {start }}-w_{\text {end }}}{T 1} \times t \tag{6} w=wstart −T1wstart −wend ×t(6)
v i t = w ∗ v i t − 1 ⋅ e − R t + rand ⋅ ( x gbest − x i t − 1 ) (7) \begin{gathered} v_i^t=w * v_i^{t-1} \cdot e^{-R t}+\operatorname{rand} \cdot\left(x_{\text {gbest }}-x_i^{t-1}\right) \end{gathered}\tag{7} vit=w∗vit−1⋅e−Rt+rand⋅(xgbest −xit−1)(7)
教与学优化算法(TLBO) [6] 包括教师阶段和学习阶段。在教师阶段,选择种群中最好的个体作为教师,通过教行为提高学生的平均成绩。设 x teacher x_{\text {teacher }} xteacher 是教师, α \alpha α 是学习因子, 且 α = \alpha= α= round ( 1 + (1+ (1+ rand ( 0 , 1 ) ) , x mean (0,1)), x_{\text {mean }} (0,1)),xmean 种群内所有个体的平均值。教 师阶段的更新公式如下:
x i t = x i t − 1 + rand ( 0 , 1 ) × ( x teacher − α × x mean ) (8) x_i^t=x_i^{t-1}+\operatorname{rand}(0,1) \times\left(x_{\text {teacher }}-\alpha \times x_{\text {mean }}\right) \tag{8} xit=xit−1+rand(0,1)×(xteacher −α×xmean )(8)
在学习阶段, 从种群中随机选出两个不同的个体 x p x_p xp 和 x q x_q xq, 比较两个个体之间的差异。令 x i x_i xi 向其中优秀的个体进行学习。 学生阶段的更新公式如下:
x i t = { x i t − 1 + rand ( 0 , 1 ) × ( x p t − x i t − 1 ) , f ( x p ) < f ( x q ) x i t − 1 + rand ( 0 , 1 ) × ( x q t − x i t − 1 ) , f ( x p ) > f ( x q ) (9) x_i^t= \begin{cases}x_i^{t-1}+\operatorname{rand}(0,1) \times\left(x_p^t-x_i^{t-1}\right), & f\left(x_p\right)
TLSAPIO 算法实现
输入: 种群规模 N \mathrm{N} N, 最大迭代次数 T 1 + T 2 \mathrm{T} 1+\mathrm{T} 2 T1+T2 。
输出:最优个体 x gbest 。 x_{\text {gbest 。 }} xgbest 。
Step1: 初始化鸽群算法相关的参数, 包括速度和位置。
Step2: 计算鸽子的适应度值, 找出个体极值 x p x_p xp 和全局极值 x gbest ∘ x_{\text {gbest } \circ} xgbest ∘
Step3: 执行地图和指南针算子, 并根据公式(1)和(2) 更新鸽子的速度和位置。
Step4: 当 t > T 1 t>\mathrm{T} 1 t>T1 时, 停止执行地图和指南针算子, 转而去执 行地标算子。否则继续 Step3。
Step5: 执行地标算子, 对鸽子的适应度值进行排序, 适应 度值较低的鸽子执行教与学优化算法, 并根据公式 (7) 、(8) 和(9)更新速度和位置, 同时计算适应度值。
Step6: 当 t > T 2 t>\mathrm{T} 2 t>T2 时, 停止执行地标算子, 输出最后结果。否 则继续 Step5。
Step7: 计算两次位置变化引起的适应度值的变化量 Δ f = f i ( x i ( t + 1 ) ) − f i ( x i ( t ) ) \Delta f=f_i\left(x_i(t+1)\right)-f_i\left(x_i(t)\right) Δf=fi(xi(t+1))−fi(xi(t)), 如果 Δ f < 0 \Delta f<0 Δf<0 或 exp ( − Δ f / T ) > \exp (-\Delta f / T)> exp(−Δf/T)> rand, 则接受新位置, 否则保留旧位置。
Step8: 执行降温操作, T = T ⋅ \mathrm{T}=\mathrm{T} \cdot T=T⋅ decayscale。
Step9: 判断是否满足终止条件, 若满足, 则结束算法, 输 出全局最优值。否则转 Step2。
[1]未建英,张丽娜,付发.混合模拟退火和教与学的鸽群优化算法[J].科技经济导刊,2019,27(12):153-155.