- 数据可视化:python画散点图scatter
西红柿爱吃小番茄
pythonpython数据可视化matplotlib
数据可视化:python画散点图scatter我想遍历一幅图的所有像素的h分量的值,然后用散点图表示出来。观察这幅图的h分量的值得变化范围。scatter函数的原型matplotlib.pyplot.scatter(x,y,s=20,c='b',marker='o',cmap=None,norm=None,vmin=None,vmax=None,linewidths=None,vert=None,
- 【AI】使用Python实现机器学习小项目教程
丶2136
AI人工智能python机器学习
引言在本教程中,我们将带领您使用Python编程语言实现一个经典的机器学习项目——鸢尾花(Iris)分类。通过这个项目,您将掌握机器学习的基本流程,包括数据加载、预处理、模型训练、评估和优化等步骤。论文AIGC检测,降AIGC检测,AI降重,三连私信免费获取:ReduceAIGC9折券!DetectAIGC立减2元券!AI降重9折券!目录引言一、项目背景与目标二、开发环境准备2.1所需工具2.2环
- 定积分及其在概率论与统计学中的应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
定积分及其在概率论与统计学中的应用1.背景介绍1.1定积分的概念定积分是微积分学中一个基本概念,它是对连续函数在一个区间上的累积变化量进行测度。定积分可以看作是对无限小量的累加,是对函数在给定区间内的面积进行测量。1.2定积分在概率论与统计学中的重要性在概率论和统计学中,定积分扮演着非常重要的角色。概率论中的概率密度函数、累积分布函数等核心概念都需要借助定积分来定义和计算。统计学中的置信区间估计、
- AI人工智能中的概率论与统计学原理与Python实战:Python实现概率模型
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的不断发展,概率论与统计学在人工智能领域的应用越来越广泛。概率论与统计学是人工智能中的基础知识之一,它们在机器学习、深度学习、自然语言处理等领域都有着重要的作用。本文将介绍概率论与统计学的核心概念、算法原理、具体操作步骤以及Python实现方法,并通过具体代码实例进行详细解释。2.核心概念与联系2.1概率论与统计学的区别概率论是一门数学学科,它研究随机事件发生的可能性。
- 技术解析麦萌短剧《月光下的你》:从「时间序列的对抗扰动」到「加密身份的收敛证明」
萌萌短剧
重构
《月光下的你》以十六年的时间跨度展开一场关于「数据污染」与「身份验证」的深度博弈,本文将用机器学习视角拆解这场跨越时空的模型纠偏实验。1.数据污染事件:十六年前的对抗攻击许芳菲(Agent_Xu)的遭遇可视为时间序列上的对抗样本注入:标签篡改攻击:许清清(Adversary_XuQing)通过伪造标签(Label_Tampering)将Agent_Xu与傅临州(Node_Fu)强行关联,触发道德约
- Cesium:开源的三维地球可视化引擎
ZD1
信息可视化
简介:Cesium是一款开源的三维地球可视化引擎,为开发者和用户提供了强大且易于使用的工具,用于创建令人惊叹的虚拟地球场景。它基于WebGL技术,能够在现代的Web浏览器上运行,并支持各种平台和设备。本文将详细介绍Cesium的特点和应用领域。特点:a.高性能:Cesium利用GPU加速和流式处理技术,能够处理大规模的地理数据,并实时渲染出逼真的三维地球场景。b.开放性:Cesium是一个开源项目
- Python在股票数据分析中的应用有哪些?如何用Python获取股票数据并进行可视化
财云量化
python炒股自动化量化交易程序化交易pythonpython股票数据分析数据获取可视化股票量化接口股票API接口
炒股自动化:申请官方API接口,散户也可以python炒股自动化(0),申请券商API接口python炒股自动化(1),量化交易接口区别Python炒股自动化(2):获取股票实时数据和历史数据Python炒股自动化(3):分析取回的实时数据和历史数据Python炒股自动化(4):通过接口向交易所发送订单Python炒股自动化(5):通过接口查询订单,查询账户资产股票量化,Python炒股,CSDN
- Cesium-三维地球可视化应用
程序员_三木
Web3dwebglThree.js
什么是CesiumJS?CesiumJS是一个强大的开源JavaScript库,用于构建高性能的3D地图和地球可视化应用。无论你是从事地理信息系统(GIS)开发、数据可视化,还是需要展示空间数据,CesiumJS都能提供灵活的解决方案。它以WebGL为核心,专注于大规模地理空间数据的实时渲染。CesiumJS是Cesium平台的核心部分,与Cesiumion等服务无缝集成,支持从数据管理到可视化的
- Cesium实时建筑物三维可视化与地理信息系统(GIS)
OvzStream
GIS
近年来,随着科技的不断发展,地理信息系统(GIS)和三维可视化技术在城市规划、建筑设计和地理空间分析中扮演着越来越重要的角色。在这篇文章中,我们将探讨如何利用Cesium库实现实时建筑物的三维可视化与GIS集成,为读者展示如何通过编写代码来实现这一功能。首先,我们需要了解Cesium是什么。Cesium是一个开源的JavaScript库,专门用于创建基于Web的地理信息系统应用程序。它提供了强大的
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- Ollama 基本概念
Mr_One_Zhang
学习Ollamaai
Ollama是一个本地化的、支持多种自然语言处理(NLP)任务的机器学习框架,专注于模型加载、推理和生成任务。通过Ollama,用户能够方便地与本地部署的大型预训练模型进行交互。1.模型(Model)在Ollama中,模型是核心组成部分。它们是经过预训练的机器学习模型,能够执行不同的任务,例如文本生成、文本摘要、情感分析、对话生成等。Ollama支持多种流行的预训练模型,常见的模型有:deepse
- 人工智能直通车系列24【机器学习基础】(机器学习模型评估指标(回归))
浪九天
人工智能直通车开发语言python机器学习深度学习神经网络人工智能
目录机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R2)机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)详细解释均方误差是回归问
- 从零开始学机器学习——构建一个推荐web应用
努力的小雨
机器学习机器学习前端人工智能
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns今天,我们终于将分类器这一章节学习完活了,和回归一样,最后一章节用来构建web应用程序,我们会回顾之前所学的知识点,并新增一个web应用用来让模型和用户交互。所以今天的主题是美食推荐。美食推荐Web应用程序首先,请不要担心,本章节并不会涉及过多的前端知识点。我们此次的学习重点在于机器学习本身,因此我们
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 从LLM出发:由浅入深探索AI开发的全流程与简单实践(全文3w字)
码事漫谈
AI人工智能
文章目录第一部分:AI开发的背景与历史1.1人工智能的起源与发展1.2神经网络与深度学习的崛起1.3Transformer架构与LLM的兴起1.4当前AI开发的现状与趋势第二部分:AI开发的核心技术2.1机器学习:AI的基础2.1.1机器学习的类型2.1.2机器学习的流程2.2深度学习:机器学习的进阶2.2.1神经网络基础2.2.2深度学习的关键架构2.3Transformer架构:现代LLM的核
- 纳米尺度仿真软件:Quantum Espresso_(20).机器学习在QuantumEspresso中的应用
kkchenjj
分子动力学2机器学习人工智能模拟仿真仿真模拟分子动力学
机器学习在QuantumEspresso中的应用在现代材料科学和纳米技术的研究中,机器学习(ML)技术已经成为一种强大的工具,用于加速和优化量子力学计算。QuantumEspresso是一个广泛使用的开源软件包,用于进行第一性原理计算,特别是在纳米尺度材料的模拟中。本节将介绍如何将机器学习技术应用于QuantumEspresso,以提高计算效率、预测材料性质和优化结构。1.机器学习与第一性原理计算
- 批量安装 Python 库的脚本:提高python学习效率的第一步(附源码)
TAGRENLA
Interestingpythonprojectpython学习开发语言
批量安装Python库批量安装Python库的脚本:提高数据分析效率的一步(附源码)批量安装脚本前提条件使用pip:Python包管理工具批量安装脚本查看当前python解释器中安装的所有的库批量安装Python库的脚本:提高数据分析效率的一步(附源码)在现代数据分析领域,Python已成为一个不可或缺的工具。为了进行数据处理、分析、可视化和建模等任务,Python社区涌现出了众多强大的库和工具。
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- 新手村:数据预处理-异常值检测方法
嘉羽很烦
机器学习机器学习
机器学习中异常值检测方法一、前置条件知识领域要求编程基础Python基础(变量、循环、函数)、JupyterNotebook或PyCharm使用。统计学基础理解均值、中位数、标准差、四分位数、正态分布、Z-score等概念。机器学习基础熟悉监督/无监督学习、分类、聚类、回归等基本概念。数据预处理数据清洗、特征缩放(标准化/归一化)、数据可视化(Matplotlib/Seaborn)。二、渐进式学习
- 新手村:数据预处理-特征缩放
嘉羽很烦
机器学习线性回归算法机器学习
新手村:数据预处理-特征缩放特征缩放(FeatureScaling)是数据预处理中的一个重要步骤,特别是在应用某些机器学习算法时。特征缩放可以使不同尺度的特征具有相同的量级,从而提高模型训练的效率和性能。常见的特征缩放方法包括标准化(Standardization)和归一化(Normalization)。常见的特征缩放方法标准化(Standardization)将特征转换为均值为0,标准差为1的标
- 过拟合:机器学习中的“死记硬背”陷阱
彩旗工作室
人工智能机器学习人工智能
在机器学习中,过拟合(Overfitting)是一个几乎每个从业者都会遇到的经典问题。它像一把双刃剑:当模型过于“聪明”时,可能会陷入对训练数据的过度依赖,从而失去处理新问题的能力。本文将从原理到实践,深入探讨过拟合的本质及应对策略。1.什么是过拟合?过拟合是指模型在训练数据上表现极佳,但在新数据(测试数据或真实场景数据)上表现显著下降的现象。通俗来说,模型像一个“死记硬背的学生”,记住了训练集中
- DataEase:一款国产开源数据可视化分析工具
不剪发的Tony老师
编程技能BI数据分析DataEase
DataEase是由飞致云开发的一款基于Web的数据可视化BI工具,支持丰富的数据源连接,能够通过拖拉拽方式快速制作图表,帮助用户快速分析业务数据并洞察其趋势,为企业的业务改进与优化提供支持。DataEase的优势在于:开源开放:零门槛,线上快速获取和安装,按月迭代;简单易用:极易上手,通过鼠标点击和拖拽即可完成分析;全场景支持:跨平台安装和多样化嵌入支持;安全分享:支持多种数据分享方式,确保数据
- kubernetes集群监控 Kube-Prometheus-Stack
xiaojinran
k8sprometheusdocker运维kubernetesprometheus容器grafana
kubernetes集群监控概述Kubernetes(K8s)集群监控是指对Kubernetes集群中的各个组件和资源进行实时监测和数据收集,以获取对集群健康状态、性能指标和事件的可视化和告警。Kubernetes集群监控的内容通常包括以下几个方面:基础设施监控:监控物理服务器、虚拟机或云实例的资源使用情况,包括CPU、内存、磁盘和网络等指标。这可以帮助确保集群的底层基础设施正常运行,并及时发现资
- 【Python】已解决:pip安装第三方模块(库)与PyCharm中不同步的问题(PyCharm添加本地python解释器)
屿小夏
pythonpippycharm
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 如何在github上参与开源项目
这个懒人
github开源软件
1.创建GitHub账号如果你还没有GitHub账号,首先需要注册一个:访问GitHub官网。点击右上角的“Signup”按钮,填写注册信息并完成注册。2.找到感兴趣的项目GitHub上有成千上万的开源项目,你可以通过以下方式找到感兴趣的项目:搜索项目:在GitHub首页的搜索框中输入关键词,例如“机器学习”、“Web开发”等。使用高级搜索功能,通过语言、标签等过滤条件找到合适的项目。浏览Tren
- 【AI大模型智能应用】Deepseek生成测试用例
柳柳的博客
AI大模型测试用例
在软件开发过程中,测试用例的设计和编写是确保软件质量的关键。然而,软件系统的复杂性不断增加,手动编写测试用例的工作量变得异常庞大,且容易出错。DeepSeek基于人工智能和机器学习,它能够依据软件的需求和设计文档,自动生成高质量的测试用例,显著减轻人工编写测试用例的负担。体验一把用DeepSeek编写测试用例,还生成清晰直观的思维导图,整个流程十分顺畅。这篇文章讲解如何使用deepseek生成功能
- Python依赖管理工具分析
xdpcxq1029
python开发语言
Python的依赖管理工具一直没有标准化,原因主要包括:历史发展的随意性:Python发展早期对于依赖管理的重视程度不足,缺乏从一开始就进行统一规划和设计的意识社区的分散性:Python社区庞大且分散,众多开发者和团队各自为政,根据自己的需求和偏好开发工具,缺乏统一的协调和整合机制多样化的使用场景:Python应用场景广泛,从Web开发到数据科学、机器学习、系统管理脚本等。不同场景对依赖管理有着不
- R语言的移动应用开发
滕若岚
包罗万象golang开发语言后端
R语言的移动应用开发在数据科学和统计分析的大潮中,R语言因其强大的数据处理和可视化能力而备受青睐。然而,R语言对移动应用开发的适用性并未得到广泛关注。本文将探讨R语言在移动应用开发中的潜力及其工具,并提供一些实践示例,希望能为读者在这一新兴领域的探索提供帮助。一、R语言概述R语言是一种用于统计计算和图形绘制的编程语言,因其简洁的语法和丰富的包生态系统受到数据科学家的广泛使用。R语言的强大之处在于其
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它