桃叶儿尖上尖,柳絮儿飞满了天…
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
解释:其中einops库用于张量操作,增强代码的可读性,使用还是比较方便的。教程链接:
einops基础教程
einsum讲解
if __name__=="__main__":
net = ViT(image_size=256,
patch_size=32,#pathces的尺寸
num_classes=1000,
dim=1024, #embddings的长度,也就是每个block的输入输出的尺寸
depth=6,#网络深度,多少个block
heads=16,#注意力抽头的个数
mlp_dim=2048,#mlp中反瓶颈结构的中间维度,也就是先升维,再降维
dropout=0.1,
emb_dropout=0.1)
x = torch.rand((2, 3, 256, 256))#测试数据
output = net(x)
从主干到分支解释代码。
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads,
mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.Linear(patch_dim, dim),#dim是embedding嵌入的空间
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
#设置位置参数,这个计算的是块之间的位置,多设置一个class_tokens
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
import torchsnooper
with torchsnooper.snoop():
#img(2,3,256,256)
#Rearrange(): (2, 8*8, 32*32*3)
#Linear(): (2, 8*8, 1024) embeddings
x = self.to_patch_embedding(img)
b, n, _ = x.shape #b=2, n=64 n表示embeddings向量个数
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) #(2, 1, 1024)#每个样本的都要增加一个,用于从其他的注意力向量上交互信息
x = torch.cat((cls_tokens, x), dim=1) #(2, 65, 1024) 此处有broadcast
x += self.pos_embedding[:, :(n + 1)] #(2, 65, 1024) 加上位置信息
x = self.dropout(x)
x = self.transformer(x)#经过六个变换块
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]#获取所有向量的平均还是只需要第一个向量
x = self.to_latent(x)
return self.mlp_head(x)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
'''
dim:嵌入vectors, depth:网络深度, heads:注意力头的个数 ,dim_head:注意力头的维度
'''
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),#注意力块
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))#前向块
]))
def forward(self, x):
import torchsnooper
with torchsnooper.snoop():
for attn, ff in self.layers:
x = attn(x) + x#残差块
x = ff(x) + x
return x
class PreNorm(nn.Module):#注意力块或者前向块前加上LN
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads #八个注意力vector变成一根vector
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5 #qkTv下的根号dim
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)#同时计算qkv
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
import torchsnooper
with torchsnooper.snoop():
hh = self.heads
b, n, _, h = *x.shape, self.heads
#(b, 65, 1024, heads=8),65是64+1
qkv = self.to_qkv(x).chunk(3, dim = -1)#沿着最后一维对此分块,此时是列表,其中有3个元素,均为(2,65,1024)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)#将1024分成8个抽头,也就是说八个抽头是一块计算的,每个就是128
#q,k,v(2,16,65, 64)#16是因为在ViT的调用中设置了heads=16
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale #(2, 16, 65, 65) qkT
attn = self.attend(dots)#softmax
out = einsum('b h i j, b h j d -> b h i d', attn, v)#qkTv (2,16,65,64)
out = rearrange(out, 'b h n d -> b n (h d)')#concat (2,65,16*64)将8个head进行合并
return self.to_out(out)#linear
class FeedForward(nn.Module):#反瓶颈结构,中间高
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)