深度学习之生成对抗网络(8)WGAN-GP实战

深度学习之生成对抗网络(8)WGAN-GP实战

  • 代码修改
  • 完整代码
    • WGAN
    • WGAN_train

代码修改

 WGAN-GP模型可以在原来GAN代码实现的基础上仅做少量修改。WGAN-GP模型的判别器D的输出不再是样本类别的概率,输出不需要加Sigmoid激活函数。同时添加梯度惩罚项,实现如下:

def gradient_penalty(discriminator, batch_x, fake_image):
    # 梯度惩罚项计算函数
    batchsz = batch_x.shape[0]

    # 每个样本均随机采样t,用于差值,[b, h, w, c]
    t = tf.random.uniform([batchsz, 1, 1, 1])
    # 自动扩展为x的形状,[b, 1, 1, 1] => [b, h, w, c]
    t = tf.broadcast_to(t, batch_x.shape)
    # 在真假图片之间做线性差值
    interplate = t * batch_x + (1 - t) * fake_image
    # 在梯度环境中计算D对差值样本的梯度
    with tf.GradientTape() as tape:
        tape.watch([interplate])  # 加入梯度观察列表
        d_interplote_logits = discriminator(interplate, training=True)
    grads = tape.gradient(d_interplote_logits, interplate)

    # 计算每个样本的梯度的范数:grads:[b, h, w, c] => [b, -1]
    grads = tf.reshape(grads, [grads.shape[0], -1])
    gp = tf.norm(grads, axis=1)  # [b]
    # 计算梯度惩罚项
    gp = tf.reduce_mean((gp - 1) ** 2)

    return gp


 WGAN判别器的损失函数计算与GAN不一样,WGAN是直接最大化真实样本的输出值,最小化生成样本的输出值,并没有交叉熵计算的过程。代码实现如下:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_training):
    # 计算D的损失函数
    # 1. treat real image as real
    # 2. treat generated image as fake
    fake_image = generator(batch_z, is_training)  # 假样本
    d_fake_logits = discriminator(fake_image, is_training)  # 假样本的输出
    d_real_logits = discriminator(batch_x, is_training)  # 真样本的输出
    d_loss_real = celoss_ones(d_real_logits)
    d_loss_fake = celoss_zeros(d_fake_logits)
    # 计算梯度惩罚项
    gp = gradient_penalty(discriminator, batch_x, fake_image)
    # WGAN-GP D损失函数的定义,这里并不是计算交叉熵,而是直接最大化正样本的输出
    # 最小化假样本的输出和梯度惩罚项
    loss = d_loss_real + d_loss_fake + 10. * gp

    return loss, gp


 WGAN生成器G的损失函数是只需要最大化生成样本在判别器D的输出值即可,同样没有交叉熵的计算步骤。代码实现如下:

def g_loss_fn(generator, discriminator, batch_z, is_training):
    # 生成器的损失函数
    fake_image = generator(batch_z, is_training)
    d_fake_logits = discriminator(fake_image, is_training)
    # WGAN-GP G损失函数,最大化假样本的输出值
    loss = celoss_ones(d_fake_logits)

    return loss


 WGAN的朱训练逻辑基本相同,与原始的GAN相比,判别器D的作用是作为一个EM距离的计量器存在,因此判别器越准确,对生成器越有利,可以在训练一个Step时训练判别器D多次,训练G一次,从而获得较为准确的EM距离估计。


完整代码

WGAN

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers


class Generator(keras.Model):

    def __init__(self):
        super(Generator, self).__init__()

        # z: [b, 100] => [b, 3*3*512] => [b, 3, 3, 512] => [b, 64, 64, 3]
        self.fc = layers.Dense(3*3*512)

        self.conv1 = layers.Conv2DTranspose(256, 3, 3, 'valid')
        self.bn1 = layers.BatchNormalization()

        self.conv2 = layers.Conv2DTranspose(128, 5, 2, 'valid')
        self.bn2 = layers.BatchNormalization()

        self.conv3 = layers.Conv2DTranspose(3, 4, 3, 'valid')

    def call(self, inputs, training=None):
        # [z, 100] => [z, 3*3*512]
        x = self.fc(inputs)
        x = tf.reshape(x, [-1, 3, 3, 512])
        x = tf.nn.leaky_relu(x)

        #
        x = tf.nn.leaky_relu(self.bn1(self.conv1(x), training=training))
        x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))
        x = self.conv3(x)
        x = tf.tanh(x)

        return x


class Discriminator(keras.Model):

    def __init__(self):
        super(Discriminator, self).__init__()

        # [b, 64, 64, 3] => [b, 1]
        self.conv1 = layers.Conv2D(64, 5, 3, 'valid')

        self.conv2 = layers.Conv2D(128, 5, 3, 'valid')
        self.bn2 = layers.BatchNormalization()

        self.conv3 = layers.Conv2D(256, 5, 3, 'valid')
        self.bn3 = layers.BatchNormalization()

        # [b, h, w ,c] => [b, -1]
        self.flatten = layers.Flatten()
        self.fc = layers.Dense(1)

    def call(self, inputs, training=None):

        x = tf.nn.leaky_relu(self.conv1(inputs))
        x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))
        x = tf.nn.leaky_relu(self.bn3(self.conv3(x), training=training))

        # [b, h, w, c] => [b, -1]
        x = self.flatten(x)
        # [b, -1] => [b, 1]
        logits = self.fc(x)

        return logits


def main():

    d = Discriminator()
    g = Generator()

    x = tf.random.normal([2, 64, 64, 3])
    z = tf.random.normal([2, 100])

    prob = d(x)
    print(prob)
    x_hat = g(z)
    print(x_hat.shape)




if __name__ == '__main__':
    main()

WGAN_train

import os
import numpy as np
import tensorflow as tf
from tensorflow import keras

from PIL import Image
import glob
from Chapter13.GAN import Generator, Discriminator

from Chapter13.dataset import make_anime_dataset

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'


def save_result(val_out, val_block_size, image_path, color_mode):
    def preprocess(img):
        img = ((img + 1.0) * 127.5).astype(np.uint8)
        # img = img.astype(np.uint8)
        return img

    preprocesed = preprocess(val_out)
    final_image = np.array([])
    single_row = np.array([])
    for b in range(val_out.shape[0]):
        # concat image into a row
        if single_row.size == 0:
            single_row = preprocesed[b, :, :, :]
        else:
            single_row = np.concatenate((single_row, preprocesed[b, :, :, :]), axis=1)

        # concat image row to final_image
        if (b + 1) % val_block_size == 0:
            if final_image.size == 0:
                final_image = single_row
            else:
                final_image = np.concatenate((final_image, single_row), axis=0)

            # reset single row
            single_row = np.array([])

    if final_image.shape[2] == 1:
        final_image = np.squeeze(final_image, axis=2)
    Image.fromarray(final_image).save(image_path)


def celoss_ones(logits):
    # [b, 1]
    # [b] = [1, 1, 1, 1,]
    # loss = tf.keras.losses.categorical_crossentropy(y_pred=logits,
    #                                                y_true=tf.ones_like(logits))
    return - tf.reduce_mean(logits)


def celoss_zeros(logits):
    # [b, 1]
    # [b] = [1, 1, 1, 1,]
    # loss = tf.keras.losses.categorical_crossentropy(y_pred=logits,
    #                                                y_true=tf.zeros_like(logits))
    return tf.reduce_mean(logits)


def gradient_penalty(discriminator, batch_x, fake_image):
    # 梯度惩罚项计算函数
    batchsz = batch_x.shape[0]

    # 每个样本均随机采样t,用于差值,[b, h, w, c]
    t = tf.random.uniform([batchsz, 1, 1, 1])
    # 自动扩展为x的形状,[b, 1, 1, 1] => [b, h, w, c]
    t = tf.broadcast_to(t, batch_x.shape)
    # 在真假图片之间做线性差值
    interplate = t * batch_x + (1 - t) * fake_image
    # 在梯度环境中计算D对差值样本的梯度
    with tf.GradientTape() as tape:
        tape.watch([interplate])  # 加入梯度观察列表
        d_interplote_logits = discriminator(interplate, training=True)
    grads = tape.gradient(d_interplote_logits, interplate)

    # 计算每个样本的梯度的范数:grads:[b, h, w, c] => [b, -1]
    grads = tf.reshape(grads, [grads.shape[0], -1])
    gp = tf.norm(grads, axis=1)  # [b]
    # 计算梯度惩罚项
    gp = tf.reduce_mean((gp - 1) ** 2)

    return gp


def d_loss_fn(generator, discriminator, batch_z, batch_x, is_training):
    # 计算D的损失函数
    # 1. treat real image as real
    # 2. treat generated image as fake
    fake_image = generator(batch_z, is_training)  # 假样本
    d_fake_logits = discriminator(fake_image, is_training)  # 假样本的输出
    d_real_logits = discriminator(batch_x, is_training)  # 真样本的输出
    d_loss_real = celoss_ones(d_real_logits)
    d_loss_fake = celoss_zeros(d_fake_logits)
    # 计算梯度惩罚项
    gp = gradient_penalty(discriminator, batch_x, fake_image)
    # WGAN-GP D损失函数的定义,这里并不是计算交叉熵,而是直接最大化正样本的输出
    # 最小化假样本的输出和梯度惩罚项
    loss = d_loss_real + d_loss_fake + 10. * gp

    return loss, gp


def g_loss_fn(generator, discriminator, batch_z, is_training):
    # 生成器的损失函数
    fake_image = generator(batch_z, is_training)
    d_fake_logits = discriminator(fake_image, is_training)
    # WGAN-GP G损失函数,最大化假样本的输出值
    loss = celoss_ones(d_fake_logits)

    return loss


def main():
    tf.random.set_seed(233)
    np.random.seed(233)
    assert tf.__version__.startswith('2.')

    # hyper parameters
    z_dim = 100
    epochs = 3000000
    batch_size = 512
    learning_rate = 0.0005
    is_training = True

    img_path = glob.glob(r'/Users/xuruihang/Documents/faces_test/*.jpg')
    assert len(img_path) > 0

    dataset, img_shape, _ = make_anime_dataset(img_path, batch_size)
    print(dataset, img_shape)
    sample = next(iter(dataset))
    print(sample.shape, tf.reduce_max(sample).numpy(),
          tf.reduce_min(sample).numpy())
    dataset = dataset.repeat()
    db_iter = iter(dataset)

    generator = Generator()
    generator.build(input_shape=(4, z_dim))
    discriminator = Discriminator()
    discriminator.build(input_shape=(4, 64, 64, 3))
    z_sample = tf.random.normal([100, z_dim])

    g_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)
    d_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)

    for epoch in range(epochs):

        for _ in range(5):
            batch_z = tf.random.normal([batch_size, z_dim])
            batch_x = next(db_iter)

            # train D
            with tf.GradientTape() as tape:
                d_loss, gp = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training)
            grads = tape.gradient(d_loss, discriminator.trainable_variables)
            d_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))

        batch_z = tf.random.normal([batch_size, z_dim])

        with tf.GradientTape() as tape:
            g_loss = g_loss_fn(generator, discriminator, batch_z, is_training)
        grads = tape.gradient(g_loss, generator.trainable_variables)
        g_optimizer.apply_gradients(zip(grads, generator.trainable_variables))

        if epoch % 100 == 0:
            print(epoch, 'd-loss:', float(d_loss), 'g-loss:', float(g_loss),
                  'gp:', float(gp))

            z = tf.random.normal([100, z_dim])
            fake_image = generator(z, training=False)
            img_path = os.path.join('WGAN_iamges_test', 'wgan-%d.png' % epoch)
            save_result(fake_image.numpy(), 10, img_path, color_mode='P')


if __name__ == '__main__':
    main()

你可能感兴趣的:(TensorFlow2,深度学习,深度学习,神经网络,tensorflow)