《利用Python 进行数据分析》第四章:Numpy基础

       对《利用Python 进行数据分析》(Wes Mckinney著)一书中的第四章中Numpy基础进行代码实验。原书中采用的是Python2.7,而我采用的Python3.7在Pycharm调试的,因此对书中源代码进行了一定的修改,每步打印结果(除“随机”相关外)与原文校验对照一致(输出结果在注释中,简单的输出就没写结果),全手工敲写,供参考。
       Pdf文档和数据集参见:《利用Python 进行数据分析》第二章:引言中的分析代码(含pdf和数据集下载链接)

    Numpy基础:

  • 1、Numpy的ndarray:一种多维数组对象
    • 1.1 ndarray数据类型
    • 1.2 数组和标量之间的运算
    • 1.3 基本的索引和切片
    • 1.4 切片索引
    • 1.5 布尔型索引
    • 1.6 花式索引
    • 1.7 数组转置和轴转换
  • 2、通用函数:快速的元素级数组函数
    • 2.1 利用数组进行数据处理
    • 2.2 将条件逻辑表述为数组运算
    • 2.3 数学和统计方法
    • 2.4 用于布尔数组的方法
    • 2.5 排序
    • 2.6 唯一以及其他集合逻辑
  • 3、用于数组的文件输入输出
    • 3.1 将数组以二进制格式保存到磁盘
    • 3.2 存取文本文件
  • 4、线性代数
  • 5、随机数生成
  • 6、范例:随机漫步

       因为代码过长,放在一个代码段中显得冗长,因此进行了拆分,如下的库引入每个代码段中均可能有必要引入。

# -*- coding:utf-8 -*-

import numpy as np
from numpy.random import randn

1、Numpy的ndarray:一种多维数组对象

data = [[0.9526, -0.246, -0.8856],
        [0.5639, 0.22379, 0.9104]]

data = np.array(data)
print(data)
print(data * 10)
print(data + data)
print(data.shape)  # 数据维度
print(data.dtype)  # 数据类型

data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)
print(arr1) # [6.  7.5 8.  0.  1. ]

data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2)
print(arr2)
print(arr2.ndim)  # ->2
print(arr2.shape)  # (2, 4)
data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)
print(arr1.dtype)  # 数据类型为浮点型float64
print(arr2.dtype)  # 数据类型为整型int32

print(np.zeros(10))  # [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
print(np.zeros((3, 6)))  # 不要写成np.zeros(3,6)
'''[[0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]]'''
print(np.empty((2, 3, 2)))  # 返回未初始化的垃圾值
'''[[[6.23042070e-307 3.56043053e-307]
  [1.60219306e-306 2.44763557e-307]
  [1.69119330e-306 1.33514617e-307]]

  [[1.42417221e-306 1.37961641e-306]
  [1.27945651e-307 8.01097889e-307]
  [1.20161526e-306 1.42410974e-306]]]'''

print(np.arange(15))  # [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]

1.1 ndarray数据类型

arr1 = np.array([1, 2, 3], dtype=np.float64)
arr2 = np.array([1, 2, 3], dtype=np.int32)
print(arr1.dtype)  # float64
print(arr2.dtype)  # int32

arr = np.array([1, 2, 3, 4, 5])
print(arr.dtype)  # int32
float_arr = arr.astype(np.float64)
print(float_arr.dtype)  # float64
arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
print(arr)
print(arr.astype(np.int32))  # [ 3 -1 -2  0 12 10]

numeric_strings = np.array(["1.25", "-9.6", "42"], dtype=np.string_)
print(numeric_strings.astype(float))  # [ 1.25 -9.6  42.  ]

empty_unit32 = np.empty(8, dtype='u4')
print(empty_unit32)  # [1 2 3 4 5 6 7 8]  与原文结果不一致??原文为随机出来的值

1.2 数组和标量之间的运算

arr = np.array([[1., 2., 3.], [4., 5., 6.]])
print(arr)
print(arr * arr)
'''[[ 1.  4.  9.]
 [16. 25. 36.]]'''
print(arr - arr)
print(1 / arr)
'''[[1.         0.5        0.33333333]
 [0.25       0.2        0.16666667]]'''
print(arr ** 0.5)
'''[[1.  1.41421356  1.73205081]
 [2.  2.23606798  2.44948974]]'''

1.3 基本的索引和切片

arr = np.arange(10)
print(arr[5])
print(arr[5:8])
arr[5:8] = 12  # 更改numpy数组中的元素
print(arr)  # 由于广播机制 输出->[ 0  1  2  3  4 12 12 12  8  9]

arr_slice = arr[5:8]
arr_slice[1] = 12345
print(arr)  # [0   1   2   3   4  12 12345   12   8   9]
arr_slice[:] = 64
print(arr)  # [ 0  1  2  3  4 64 64 64  8  9]

arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr2d[2])  # [7 8 9]
print(arr2d[0][2])  # 3
print(arr2d[0, 2])  # 3

arr3d = np.array([[[1, 2, 3], [4, 5, 6]],
                  [[7, 8, 9], [10, 11, 12]]])
print(arr3d)
print(arr3d.shape)  # (2, 2, 3)
print(arr3d[0])
old_values = arr3d[0].copy()
arr3d[0] = 42
print(arr3d)
'''[[[42 42 42]
  [42 42 42]]

 [[ 7  8  9]
  [10 11 12]]]'''

arr3d[0] = old_values
print(arr3d)

1.4 切片索引

# print(arr) #[ 0  1  2  3  4 64 64 64  8  9] (arr值参见“基本的索引和切片”中)
# arr2d = np.array([[1,2,3],[4,5,6],[7,8,9]])
print(arr[1:6])  # ->[ 1  2  3  4 64]
print(arr2d[:2])  # ->[[1 2 3], [4 5 6]]
print(arr2d[:2, 1:])  # -> [[2 3], [5 6]]
print(arr2d[2, :1])  # -> 7
print(arr2d[1, :2])  # ->[4,5]
print(arr2d[:, :1])  # 冒号表示整轴选取 ->[[1],[4],[7]]
arr2d[:2, 1:] = 0
print(arr2d)  # ->[[1 0 0], [4 0 0], [7 8 9]]

1.5 布尔型索引

names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
data = randn(7, 4)
print(data)
'''[[ 0.81586467  0.22772329 -1.0415652  -0.3245785 ]
 [-1.2945232   0.53349873 -0.75547509 -1.43954103]
 [-1.26108396  0.67093283  0.31324912  0.30667379]
 [-0.20715904  0.46115929 -0.99327577 -0.81750551]
 [ 0.27188598  0.50276487  0.33443927  1.19355676]
 [ 0.57509673 -0.1303353  -1.26974167 -1.24611761]
 [-0.61857004 -0.14564834  1.54315148 -0.43394236]]'''
print(names == 'Bob')  # ->[ True False False  True False False False]
print(data[names == 'Bob'])
'''[[ 0.81586467  0.22772329 -1.0415652  -0.3245785 ]
 [-0.20715904  0.46115929 -0.99327577 -0.81750551]]'''
print(data[names == 'Bob', 2:])
'''[[-1.0415652  -0.3245785 ]
 [-0.99327577 -0.81750551]]'''

print(data[names == 'Bob', 3])  # [-0.3245785  -0.81750551]
print(names != 'Bob')  # [False  True  True False  True  True  True]
print(data[~(names == 'Bob')])  # python3中使用“~”而不是“-”,与!=效果一样
'''[[-1.2945232   0.53349873 -0.75547509 -1.43954103]
 [-1.26108396  0.67093283  0.31324912  0.30667379]
 [ 0.27188598  0.50276487  0.33443927  1.19355676]
 [ 0.57509673 -0.1303353  -1.26974167 -1.24611761]
 [-0.61857004 -0.14564834  1.54315148 -0.43394236]]'''
mask = (names == 'Bob') | (names == 'Will')
print(mask)  # [ True False  True  True  True False False]
print(data[mask])
'''[[ 0.81586467,  0.22772329, -1.0415652 , -0.3245785 ],
   [-1.26108396,  0.67093283,  0.31324912,  0.30667379],
   [-0.20715904,  0.46115929, -0.99327577, -0.81750551],
   [ 0.27188598,  0.50276487,  0.33443927,  1.19355676]]'''
data[data < 0] = 0  # 将所有负值设为0
print(data)
'''
[[ 0.81586467   0.22772329   0.          0.        ]
 [0.            0.53349873   0.          0.        ]
 [0.            0.67093283   0.31324912  0.30667379]
 [0.            0.46115929   0.          0.        ]
 [ 0.27188598   0.50276487   0.33443927  1.19355676]
 [ 0.57509673   0.           0.          0.        ]
 [0.            0.           1.54315148  0.        ]]'''

# 通过一维布尔数组设置整行或整列
data[names != 'Joe'] = 7  
print(data)
'''
[[7.           7.           7.          7.        ]
 [0.           0.53349873   0.          0.        ]
 [7.           7.           7.          7.        ]
 [7.           7.           7.          7.        ]
 [7.           7.           7.          7.        ]
 [ 0.57509673  0.           0.          0.        ]
 [0.           0.           1.54315148  0.        ]]'''

1.6 花式索引

arr = np.empty((8,4))
for i in range(8):
    arr[i] = i
print(arr)
'''[[0. 0. 0. 0.]
 [1. 1. 1. 1.]
 [2. 2. 2. 2.]
 [3. 3. 3. 3.]
 [4. 4. 4. 4.]
 [5. 5. 5. 5.]
 [6. 6. 6. 6.]
 [7. 7. 7. 7.]]'''

# 按特定顺序选取子集
print(arr[[4,3,0,6]]) 
'''[[4. 4. 4. 4.]
 [3. 3. 3. 3.]
 [0. 0. 0. 0.]
 [6. 6. 6. 6.]]'''
 
# 加负号后会从后面选取
print(arr[[-3,-5,-7]]) 
'''[[5. 5. 5. 5.]
 [3. 3. 3. 3.]
 [1. 1. 1. 1.]]'''
arr = np.arange(32).reshape((8,4))
print(arr)
'''[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]
 [20 21 22 23]
 [24 25 26 27]
 [28 29 30 31]]'''
print(arr[[1,5,7,2],[0,3,1,2]]) # [ 4 23 29 10]
print(arr[[1,5,7,2]][:,[0,3,1,2]])
'''[[ 4  7  5  6]
 [20 23 21 22]
 [28 31 29 30]
 [ 8 11  9 10]]'''
print(arr[np.ix_([1,5,7,2], [0,3,1,2])])
'''[[ 4  7  5  6]
 [20 23 21 22]
 [28 31 29 30]
 [ 8 11  9 10]]'''

1.7 数组转置和轴转换

arr = np.arange(15).reshape((3,5))
print(arr)
'''[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]'''
print(arr.T) #数组转置
'''[[ 0  5 10]
 [ 1  6 11]
 [ 2  7 12]
 [ 3  8 13]
 [ 4  9 14]]'''

arr = np.random.randn(6,3)
print(np.dot(arr.T, arr))  # 内积计算

arr = np.arange(16).reshape((2,2,4))
print(arr)
'''[[[ 0  1  2  3]
  [ 4  5  6  7]]

 [[ 8  9 10 11]
  [12 13 14 15]]]'''

#高维数组需要一个轴编号才能转置(!!没看懂)
print(arr.transpose((1,0,2))) 
'''[[[ 0  1  2  3]
  [ 8  9 10 11]]

 [[ 4  5  6  7]
  [12 13 14 15]]]'''

print(arr.swapaxes(1,2))
'''[[[ 0  4]
  [ 1  5]
  [ 2  6]
  [ 3  7]]

 [[ 8 12]
  [ 9 13]
  [10 14]
  [11 15]]]'''

2、通用函数:快速的元素级数组函数

2.1 利用数组进行数据处理

arr = np.arange(10)
print(np.sqrt(arr)) # 求平方根
'''[0.         1.         1.41421356 1.73205081 2.         2.23606798
 2.44948974 2.64575131 2.82842712 3.        ]'''
 
# 求指数e的指数
print(np.exp(arr)) 
'''[1.00000000e+00 2.71828183e+00 7.38905610e+00 2.00855369e+01
 5.45981500e+01 1.48413159e+02 4.03428793e+02 1.09663316e+03
 2.98095799e+03 8.10308393e+03]'''
x = randn(8)
y = randn(8)
print(x)
'''[ 0.63811097 -0.51027577 -0.17726455  0.97772163 -2.14367248 -0.28716377
 -0.20549874  0.46916848]'''
print(y)
'''[ 0.63032743  1.21848016 -1.86789595  0.42896225  0.66737185  1.31428271
 -0.81983392 -0.33119709]'''
 
# 求元素级最大值,x和y对应元素比较
print(np.maximum(x,y)) 
'''[ 0.63811097  1.21848016 -0.17726455  0.97772163  0.66737185  1.31428271
 -0.20549874  0.46916848]'''

arr = randn(7) *5
print(arr)
'''[-1.04444876  1.31390346 -2.57308959  9.68938735 -7.54923318 -2.23501749
 -4.00171934]'''
 
# 将数组各元素的小数和整数部分以两个独立数组形式返回(书上没写清楚)
print(np.modf(arr))
'''(array([-0.04444876,  0.31390346, -0.57308959,  0.68938735, -0.54923318,
       -0.23501749, -0.00171934]), array([-1.,  1., -2.,  9., -7., -2., -4.]))'''

points = np.arange(-5, 5, 0.01)  #1000个间隔相等的点
xs, ys = np.meshgrid(points, points)
import matplotlib.pyplot as plt
z = np.sqrt(xs**2 + ys**2)
print(z)
'''[[7.07106781 7.06400028 7.05693985 ... 7.04988652 7.05693985 7.06400028]
 [7.06400028 7.05692568 7.04985815 ... 7.04279774 7.04985815 7.05692568]
 [7.05693985 7.04985815 7.04278354 ... 7.03571603 7.04278354 7.04985815]
 ...
 [7.04988652 7.04279774 7.03571603 ... 7.0286414  7.03571603 7.04279774]
 [7.05693985 7.04985815 7.04278354 ... 7.03571603 7.04278354 7.04985815]
 [7.06400028 7.05692568 7.04985815 ... 7.04279774 7.04985815 7.05692568]]'''
plt.imshow(z, cmap=plt.cm.gray)
plt.colorbar()
plt.title("Image plot of sqart{x^2+y^2} for a gid values")
plt.show()

2.2 将条件逻辑表述为数组运算

xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
yarr = np.array([2.1 ,2.2, 2.3, 2.4 ,2.5])
cond = np.array([True, False, True, True, False])

#根据真假值选取新值,为真则从xarr中选取,否则从yarr中选取
result = [(x if c else y) for x, y, c in zip(xarr, yarr, cond)] 
print(result) # [1.1, 2.2, 1.3, 1.4, 2.5]

result = np.where(cond, xarr, yarr) # 新的表达方式
print(result) # [1.1 2.2 1.3 1.4 2.5]

arr = randn(4,4)
print(arr)
'''[[ 0.0346191   1.22446873 -1.22899471 -0.3369665 ]
 [ 1.47604911 -0.99256909  0.00272824 -1.95770979]
 [-0.74920869 -0.4935277   1.94493423 -0.69479795]
 [ 0.48006709  1.10094828  0.06475939 -1.31085929]]'''
 
# 将正值替换为2,负值替换
print(np.where(arr > 0, 2, -2))-2
'''[[ 2  2 -2 -2]
 [ 2 -2  2 -2]
 [-2 -2  2 -2]
 [ 2  2  2 -2]]'''
 
# 将正值替换为2,负值不动
print(np.where(arr > 0, 2, arr)) 
'''[[ 2.          2.         -1.22899471 -0.3369665 ]
 [ 2.         -0.99256909  2.         -1.95770979]
 [-0.74920869 -0.4935277   2.         -0.69479795]
 [ 2.          2.          2.         -1.31085929]]'''

cond1 = np.array([True, False, False, True, True, False])
cond2 = np.array([True, True, False, False, False, True])
result = []
for i in range(6):
    if cond1[i] and cond2[i]:
        result.append(0)
    elif cond1[i]:
        result.append(1)
    elif cond2[i]:
        result.append(2)
    else:
        result.append(3)
print(result) # [0, 2, 3, 1, 1, 2]
print(np.where(cond1&cond2,0, np.where(cond1, 1, np.where(cond2,2,3)))) # [0 2 3 1 1 2], 与上述逻辑表达式效果一致

2.3 数学和统计方法

arr = np.random.randn(5,4)
print(arr)
'''[[ 0.86379303 -0.5274916   0.49188262  0.3381654 ]
 [-1.25237271 -1.02041665 -0.45664488  2.14356969]
 [ 0.94932601 -1.49865692 -0.60859843 -0.33866988]
 [-0.14164747 -0.73383431 -0.6075893   0.44304416]
 [-0.50505771 -1.49829159  0.09844207  0.67972674]]'''
print(arr.mean()) # 求均值 -0.15906608693333124
print(np.mean(arr)) # -0.15906608693333124
print(arr.sum()) #求和 -3.181321738666625
print(arr.mean(axis = 1)) # 按列求均值 [ 0.29158736 -0.14646614 -0.37414981 -0.26000673 -0.30629512]
print(arr.sum(0)) # 按行求和 [-0.08595885 -5.27869107 -1.08250792  3.2658361 ]

arr = np.array([[0,1,2],[3,4,5],[6,7,8]])
print(arr)
print(arr.cumsum(0)) # 按行求累计和
print(arr.cumprod(1)) # 按列求累计积

2.4 用于布尔数组的方法

arr = randn(100)
print((arr > 0).sum())  #求正数的数量

bools = np.array([False, False, True, False])
print(bools.any()) # True. 检查是否存在一个或者多个True
print(bools.all()) # Fasle. 检查是否都为True

2.5 排序

arr = randn(8)
print(arr)
'''[ 0.52054089  0.11640705  1.11630459 -0.488596    1.385098    2.35582882
  0.40295761 -0.98801818]'''
  
# 对数组排序,注意与sorted(arr)区分, 前者会改变原数组,后者不会
arr.sort() 
print(arr)
'''[-0.98801818 -0.488596    0.11640705  0.40295761  0.52054089  1.11630459
  1.385098    2.35582882]'''

arr = randn(5,3)
print(arr)
'''[[ 0.77209717  1.11046007  0.38905073]
 [ 0.1855081   0.1714953   0.64185395]
 [ 1.35953558 -1.32439862 -1.03117232]
 [-1.65155383 -0.45173971  1.52520206]
 [ 0.50943937  0.16410033 -0.3458179 ]]'''
arr.sort(1) #在某个轴上进行排序
print(arr)
'''[[ 0.38905073  0.77209717  1.11046007]
 [ 0.1714953   0.1855081   0.64185395]
 [-1.32439862 -1.03117232  1.35953558]
 [-1.65155383 -0.45173971  1.52520206]
 [-0.3458179   0.16410033  0.50943937]]'''

large_arr = randn(1000)
large_arr.sort()
print(large_arr[int(0.05 * len(large_arr))]) # 5%分位数

2.6 唯一以及其他集合逻辑

names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
print(np.unique(names)) # ['Bob' 'Joe' 'Will']
ints = np.array([3,3,3,2,2,1,1,4,4])
print(np.unique(ints)) # [1 2 3 4]
print(sorted(set(names)))  # ['Bob', 'Joe', 'Will']
vaules = np.array([6,0,0,3,2,5,6])
print(np.in1d(vaules, [2,3,6])) # [ True False False  True  True False  True]

3、用于数组的文件输入输出

3.1 将数组以二进制格式保存到磁盘

arr = np.arange(10)
# 保存时自动扩展为.npy格式文件
np.save("some_array", arr) 
ret = np.load("some_array.npy")
print(ret) # [0 1 2 3 4 5 6 7 8 9]

# 将多个数组保存到一个压缩文件中,数组以关键字参数的形式传入
np.savez("array_achive.npz", a = arr, b = arr) 
arch = np.load("array_achive.npz")
print(arch['b']) # [0 1 2 3 4 5 6 7 8 9]

3.2 存取文本文件

arr = np.loadtxt("python_data/ch04/array_ex.txt", delimiter=',')
print(arr)
'''[[ 0.580052  0.18673   1.040717  1.134411]
 [ 0.194163 -0.636917 -0.938659  0.124094]
 [-0.12641   0.268607 -0.695724  0.047428]
 [-1.484413  0.004176 -0.744203  0.005487]
 [ 2.302869  0.200131  1.670238 -1.88109 ]
 [-0.19323   1.047233  0.482803  0.960334]]'''

4、线性代数

x = np.array([[1.,2.,3.],[4.,5.,6.]])
y = np.array([[6.,23.],[-1,7],[8,9]])
print(x)
'''[[1. 2. 3.]
 [4. 5. 6.]]'''
print(y)
'''[[ 6. 23.]
 [-1.  7.]
 [ 8.  9.]]'''
print(x.dot(y)) # 相当于np.dot(x,y)
'''[[ 28.  64.]
 [ 67. 181.]]'''

print(np.dot(x, np.ones(3))) # [ 6. 15.]

from numpy.linalg import inv, qr
X= randn(5,5)
mat = X.T.dot(X)
print(inv(mat))  # 计算矩阵的逆
t = mat.dot(inv(mat))
q,r = qr(mat)   # 计算QR分解

5、随机数生成

samples = np.random.normal(size=(4,4))
print(samples)

from random import normalvariate
N =100000
samples = [normalvariate(0,1) for _ in range(N)] #正态分布; python3.7中没有xrange函数
ret = np.random.normal(size=N)

6、范例:随机漫步

import random
position = 0
walk =[position]
steps = 1000
for i in range(steps):
    step = 1 if random.randint(0,1) else - 1
    position += step
    walk.append(position)

plt.plot(walk)
plt.title("Random walk with +1/-1 steps")
plt.show()

nsteps = 1000
draws = np.random.randint(0,2,size=nsteps)
steps = np.where(draws > 0, 1, -1) # 感觉这个比较实用
walk = steps.cumsum()
print(walk)
print(walk.min())
print(walk.max())
print((np.abs(walk)>10).argmax())

#一次模拟多个随机漫步
nwalks = 5000
nsteps = 1000
draws = np.random.randint(0,2, size=(nwalks, nsteps)) # 0或1
steps = np.where(draws > 0, 1, -1)
walks = steps.cumsum(1)
print(walks)
print(walk.max())
print(walk.min())
# 计算30的最小穿越时间
hits30 = (np.abs(walks) > 30).any(1)
print(hits30)
# 达到30的数量
print(hits30.sum()) 
# 选出超过30(绝对值)的随机漫步,并获取在轴以上的穿越时间
crossing_times = (np.abs(walks[hits30])>=30).argmax(1) 
print(crossing_times.mean())

你可能感兴趣的:(数据分析)