- 讯飞绘镜(ai生成视频)技术浅析(三):自然语言处理(NLP)
爱研究的小牛
AIGC—视频AIGC—自然语言处理自然语言处理人工智能自然语言处理AIGC深度学习
1.技术架构概述讯飞绘镜的NLP技术架构可以分为以下几个核心模块:语义分析:理解用户输入的文本,提取关键信息(如实体、事件、情感等)。情节理解:分析文本中的故事情节,识别事件序列和逻辑关系。人物关系建模:识别文本中的人物及其关系,构建人物关系图。场景生成:根据情节和人物关系生成场景描述。每个模块都依赖于先进的深度学习模型和算法,以下将逐一详细讲解。2.语义分析语义分析的目标是从用户输入的文本中提取
- 讯飞智作 AI 配音技术浅析(一)
爱研究的小牛
AIGC—技术综述AIGC—概述AIGC—音频人工智能AIGC机器学习深度学习
一、核心技术讯飞智作AI配音技术作为科大讯飞在人工智能领域的重要成果,融合了多项前沿技术,为用户提供了高质量的语音合成服务。其核心技术主要涵盖以下几个方面:1.深度学习与神经网络讯飞智作AI配音技术以深度学习为核心驱动力,通过以下关键模型实现语音合成:Tacotron模型:该模型采用端到端的编码器-解码器架构,将输入文本直接转换为梅尔频谱(Mel-spectrogram),再通过声码器生成语音信号
- 基于YOLOv11无人机视角船舶检测系统:项目概述与技术实现
qq1309399183
计算机视觉实战项目集合YOLO无人机人工智能计算机视觉无人机视角船舶检测yolo11改进yolo11涨点
文章目录YOLOv11无人机视角船舶检测系统:项目概述与技术实现项目背景项目简介核心目标YOLOv11的技术优势1.**更强的特征提取能力**2.**改进的多尺度检测**3.**轻量化设计**4.**实时处理能力**数据准备与模型训练1.**数据集构建**2.**模型训练**系统功能与使用方法1.**实时目标检测**2.**静态图片检测**3.**视频文件处理**4.**多种目标类别支持**安装与
- 简述Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型
科学的发展-只不过是读大自然写的代码
断纱检测caffetensorflowpytorch
以下是对Caffe、TensorFlow、TensorFlowLite、ONNX、DarkNet和PyTorch等模型的简述:Caffe:Caffe(ConvolutionArchitectureForFeatureExtraction)是一个用于特征抽取的卷积框架,它是一个清晰、可读性高且快速的深度学习框架。Caffe由加州伯克利大学的贾扬清开发,起初是一个用于深度卷积网络的Python框架(无
- 超实用的Python深度学习教程 - 基于TensorFlow和Keras框架(含实例及完整代码)
AI_DL_CODE
人工智能python深度学习tensorflow
一、深度学习概述(一)深度学习的定义与发展历程深度学习在当今的科技领域占据着极为重要的地位。它是人工智能的一个重要分支,其定义为通过构建具有很多层的神经网络模型,让计算机自动从大量数据中学习复杂模式的一种技术。深度学习的发展历程可谓波澜壮阔,早期它源于对人工神经网络的研究,从简单的感知机模型开始。在发展初期,由于计算资源的限制以及数据量的不足等因素,发展较为缓慢。然而,随着计算机技术的飞速发展,尤
- 2025年美赛数学建模2025 MCM Problem A: Testing Time: The Constant Wear On Stairs A题 测试时间:楼梯上的持续磨损 代码解析
2025年数学建模美赛
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025数学建模美赛A题2025楼梯上的持续磨损matlab代码
目录Python1.数据预处理与特征工程数据标准化与特征构建2.行进方向偏好分析深度神经网络(DNN)用于方向性分析3.多人同时使用分析卷积神经网络(CNN)用于磨损模式识别4.时间序列分析LSTM模型用于时间序列预测matlab代码Python我们将采用更多的机器学习和深度学习技术,例如图像处理、深度神经网络(DNN)、卷积神经网络(CNN)等,并结合不同的算法进行更深入的分析。1.数据预处理与
- Llama大型语言模型原理详解
摆烂大大王
llamallama语言模型人工智能
Llama大型语言模型是一种基于深度学习的自然语言处理模型,它在文本生成、问答、摘要等多种NLP任务中展现出强大的性能。本文将详细解析Llama模型的原理,包括其结构、训练过程以及工作机制,帮助读者深入理解这一先进的模型。一、模型结构Llama模型采用了一种基于Transformer的架构,这是一种由多个自注意力机制和前馈神经网络组成的深度神经网络结构。Transformer架构通过自注意力机制捕
- 利用ChatGPT阅读文献:指南与技巧
摆烂大大王
chatgptMathorCup数学建模chatgpt论文阅读人工智能学习
阅读文献对于学术研究和深度学习至关重要。ChatGPT作为一款高级人工智能聊天机器人,可以帮助用户更高效地阅读和理解文献。以下是如何利用ChatGPT阅读文献的一些指南和技巧。1.文献检索在你阅读文献之前,首先需要找到相关文献。可以使用如下命令让ChatGPT帮助你进行文献检索:/findpapers关键词或主题例如,如果你需要寻找关于人工智能在医疗领域应用的文献,可以输入:/findpapers
- 目标检测入门教程:使用Python实现目标检测算法
晨曦之光,优美芝麻
目标检测python算法机器学习-深度学习
目标检测是计算机视觉领域中的重要任务,它旨在识别和定位图像或视频中的特定对象。本教程将介绍如何使用Python编程语言实现目标检测算法。我们将使用一种广泛应用的目标检测算法——基于深度学习的单阶段检测器YOLO(YouOnlyLookOnce)的最新版本YOLOv4作为示例。在开始之前,请确保您已经安装了Python和以下必要的库:NumPy、OpenCV和PyTorch。您可以使用pip命令来安
- 基于Transformer的多通道肌电信号序列分类
咖啡百怪
transformer深度学习人工智能
表面肌电信号(sEMG)为十分重要的人体感官信号,不同的动作和状态对应不同的肌电信号,利用肌电信号的表征能力,我们可以实现对NAO机器人的控制。本项目基于Transformer实现对表面肌电信号的分类,数据使用excel进行保存,使用Pytorch架构建立模型并训练,利用基于Paramiko库的SSH连接来实现对NAO机器人的远程控制。在这里贴上该项目的github仓库连接,大家用得到的可以点个星
- PyTorch 快速入门
無量空所
深度学习机器学习pytorch开源
我们将通过一个简单的示例,快速了解如何使用PyTorch进行机器学习任务。PyTorch是一个开源的机器学习库,它提供了丰富的工具和库,帮助我们轻松地构建、训练和测试神经网络模型。以下是本教程的主要内容:一、数据处理PyTorch提供了两个基本的数据处理工具:torch.utils.data.DataLoader和torch.utils.data.Dataset。Dataset用于存储样本及其对应
- 【Java】已解决:`java.lang.NoClassDefFoundError`
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 【Java】已解决java.lang.NoSuchMethodException异常
屿小夏
javapython开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 五类推理(逻辑推理、概率推理、图推理、基于深度学习的推理)的开源库 (一)
由数入道
深度学习开源人工智能
在开发中,有一些开源库可以实现不同类型的推理,包括逻辑推理、概率推理、图推理、基于深度学习的推理等。以下是五类推理(逻辑推理、概率推理、图推理、基于深度学习的推理)的现成开源库,它们各自的功能、特点和适用场景的详细介绍,并进行对比分析。1.逻辑推理推理:PyDatalog库介绍:PyDatalog是一个Python的逻辑编程库,它将逻辑编程的功能引入到Python中,提供了在Python中进行规则
- 杨立昆退休?中国Deepseek超Llama 4触发Meta
极道Jdon
javascriptreactjs
[昨天,人工智能领域发生了一些事情:杨立昆领导的Meta生成式人工智能部门(Metagenaiorg)陷入了恐慌模式。杨立昆是Meta(原Facebook)的首席人工智能科学家,同时也是纽约大学的教授。杨立昆因其在深度学习领域的开创性工作而获得了图灵奖(TuringAward),这是计算机科学领域的最高荣誉之一。恐慌模式始于DeepseekV3,它在性能测试中已经超过了Llama4。更让人尴尬的是
- GGUF 大模型文件格式
香菜烤面包
AI系统与算法部署语言模型
1.基础原理GGUF简介当前的大模型的参数规模较大,数以千亿的参数导致了它们的预训练结果文件都在几十GB甚至是几百GB,这不仅导致其使用成本很高,在不同平台进行交换也非常困难。因此,大模型预训练结果文件的保存格式对于模型的使用和生态的发展来说极其重要。大语言模型的开发通常使用PyTorch等框架,其预训练结果通常也会保存为相应的二进制格式,如pt后缀的文件通常就是PyTorch框架保存的二进制预训
- ollama把huggingface下载下来的模型转换为gguf
abments
人工智能语言模型
说明ollama导入从huggingface下载下来的模型在ollama的说明文档中有详细的介绍,大家可以按照文档说明进行操作。importing-pytorch–safetensors。既然官方已经给出了明确的操作步骤,那么我写这篇博客的意义又是什么呢?主要有两个目的:1.我的操作可能更适合中国宝宝体质2.方便后期自己查看要求建议使用conda管理python环境建议使用linux或mac环境,
- pytorch小记(七):pytorch中的保存/加载模型操作
墨绿色的摆渡人
pythonpytorch小记pytorch人工智能python
pytorch小记(七):pytorch中的保存/加载模型操作1.加载模型参数(`state_dict`)1.1保存模型参数1.2加载模型参数1.3常见变种1.3.1指定加载设备1.3.2非严格加载(跳过部分层)1.3.3打印加载的参数2.加载整个模型2.1保存整个模型2.2加载整个模型2.3注意事项3.总结4.加载模型的完整代码示例4.1保存和加载参数4.2保存和加载整个模型4.3加载到不同设备
- 书生浦语第五期
晴斋1216
语言模型
基础作业完成以下任务,并将实现过程记录截图:配置lmdeploy运行环境下载internlm-chat-1.8b模型以命令行方式与模型对话视频链接文档链接基础知识学习模型部署在软件工程中,部署通常指的是将开发完毕的软件投入使用的过程。在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是将训练好的深度学习模型在特定环境中运行的过程。目前大模型部署面临的挑战计算量巨大内
- 斯坦福吴恩达-深度学习和机器学习全套视频+课件!
Alexquyun
人工智能机器学习深度学习python
这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。DeepLearningSpecialization对卷积神经网络(CNN
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
知识鱼丸
machinelearning逻辑回归算法机器学习
1.数据准备首先,我们需要一些示例数据。在这个例子中,我们将生成一些简单的二维数据点,并为其分配标签。2.定义逻辑回归模型接下来,我们定义一个简单的逻辑回归模型。3.训练模型定义损失函数和优化器,然后进行模型训练。4.保存模型训练完成后,我们可以保存模型的状态字典。5.加载模型并进行预测加载保存的模型,并进行预测。importtorchimporttorch.nnasnnimporttorch.o
- 梯度提升用于高效的分类与回归
纠结哥_Shrek
分类回归数据挖掘
使用决策树(DecisionTree)实现梯度提升(GradientBoosting)主要是模拟GBDT(GradientBoostingDecisionTrees)的原理,即:第一棵树拟合原始数据计算残差(负梯度方向)用新的树去拟合残差累加所有树的预测值重复步骤2-4,直至达到指定轮数下面是一个纯Python+PyTorch实现GBDT(梯度提升决策树)的代码示例。1.纯Python实现梯度提升
- 校招154W!DeepSeek待遇和核心成员曝光!
AI生成曾小健
人工智能
校招154W!DeepSeek待遇和核心成员曝光!DeepSeek的薪酬模式极为慷慨,提供员工一年14薪的福利。其高薪职位如深度学习研究员,年薪最高可达税前154万元。同时,该公司也注重给予其他职位合理薪酬,如客户端研发工程师年薪30万,实习生日薪500元,并提供转正机会及房补。更有平台显示,DeepAGI大模型实习生日薪高达500-1000元。尽管这些待遇与硅谷相比仍有差距,但已相当优厚。Dee
- 深度学习过程是什么
小松要进步
李哥深度学习深度学习
问:深度学习是:一组原始数据,经过线性变换、非线性变换、偏差加和等操作后得到一组预测数据,再根据损失函数计算预测数据和原始数据的差值,用差值数据对权重和偏差求偏导,这里的偏导数的值也就是使得损失减小的最佳方向,然后根据偏导数的方向和步长更新权重和偏差,对吗答:您的描述大致正确,但有一些细节需要澄清和修正,以更准确地反映深度学习中模型训练的过程。以下是详细的解释:1.原始数据处理:一组原始数据首先通
- TensorBoard可视化工具支持哪些类型的图表?
alankuo
人工智能
TensorBoard支持多种类型的图表,以下是详细介绍:标量图(Scalars)定义与用途:用于展示单个数值随时间(通常是训练步骤或迭代次数)的变化情况。在深度学习模型训练中,最常见的是损失函数值和评估指标(如准确率、精确率、召回率等)的变化曲线。示例:例如,在训练一个图像分类模型时,记录训练集和测试集上的损失函数值。通过标量图,可以直观地看到随着训练轮次(epochs)的增加,损失函数值是如何
- pytorch深度Q网络
纠结哥_Shrek
pytorch人工智能python
DQN引入了深度神经网络来近似Q函数,解决了传统Q-learning在处理高维状态空间时的瓶颈,尤其是在像Atari游戏这样的复杂环境中。DQN的核心思想是使用神经网络Q(s,a;θ)Q(s,a;\theta)Q(s,a;θ)来近似Q值函数,其中θ\thetaθ是神经网络的参数。DQN的关键创新包括:经验回放(ExperienceReplay):在强化学习中,当前的学习可能会依赖于最近的经验,容易
- COCO8 数据集上训练 YOLO11n:从入门到跑路(100 轮训练实战)
星际编程喵
Python探索之旅目标跟踪人工智能计算机视觉机器学习
前言训练YOLO11n,听起来就像是给赛博世界的“战斗天使”装上双核发动机,而COCO8数据集,则是那个小小的试验场。今天,我们就要在这个数据集上训练YOLO11n模型100轮,见证它如何从一个懵懂的“AI萌新”成长为“目标检测大佬”。本篇文章将以专业又幽默的方式,带你深入了解训练流程,并提供完整代码示例,让你轻松掌握这项技术。简介YOLO(YouOnlyLookOnce)是目标检测领域的明星模型
- 学习python你必须弄懂的 Python、Pycharm、Anaconda 三者之间的关系
经纬数智
pythonpythonpycharm开发语言conda
Python作为深度学习和人工智能学习的热门语言,学习一门语言,除了学会其简单的语法之外还需要对其进行运行和实现,才能实现和发挥其功能和作用。下面来介绍运行Python代码常用到的工具总结。一.Python、Pycharm、Anaconda关系介绍1.PythonPython是一种跨平台的计算机程序语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(
- VS2019+QT4.15+openCV4.5.1+CUDA加速
小小秀峰哥
python人工智能深度学习
文章目录前言一、软件安转以及注意事项二、CMake编译总结前言`最近公司有一个关于使用海康威视网络摄像头的目标检测的项目,发现使用openCV显示时,出现很大的延时,因此,只能使用cuda进行加速才能使显示达到实时,在进行编译时我发现很多问题,解决了好几天才完成编译一、软件安转以及注意事项1、Windows10系统2、VisualStudio2019与QT4.15(先安装)3、CUDA11.8、c
- CUDA编程(一):GPU计算与CUDA编程简介
AI Player
CUDA人工智能CUDANVIDIA
CUDA编程(一):GPU计算与CUDA编程简介GPU计算GPU硬件资源GPU软件资源GPU存储资源CUDA编程GPU计算NVIDIA公司发布的CUDA是建立在GPU上的一个通用并行计算平台和编程模型,CUDA编程可以利用GPU的并行计算引擎来更加高效地解决比较复杂的计算难题。GPU的并行计算最成功的一个应用就是深度学习领域。GPU通常不作为一个独立运行的计算平台,而需要与CPU协同工作,它可以看
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri