- 大白话深入浅出讲嵌入式C语言多线程编程
大模型大数据攻城狮
多线程并发编程资源竞争开源软件看门狗硬件寄存器
目录第一章线程基础与操作1.1线程的创建与启动1.2线程资源的管理与释放第二章线程同步与通信2.1互斥锁与条件变量的运用2.2线程间的消息传递与共享内存第三章锁机制与线程安全3.1锁的类型与选择3.2线程安全问题的识别与修复第四章并发算法与性能优化4.1并发算法的实现4.2多线程程序的性能调优第五章高级主题与应用实例5.1线程库的实现与线程本地存储5.2真实世界中的多线程应用5.2.1网络服务器中
- 代码随想录训练营第二十三天| 39. 组合总和 40.组合总和II 131.分割回文串
chengooooooo
算法
39.组合总和题目链接/文章讲解:代码随想录视频讲解:带你学透回溯算法-组合总和(对应「leetcode」力扣题目:39.组合总和)|回溯法精讲!_哔哩哔哩_bilibili//组合问题要考虑是不是在一个集合里操作//最常见的就是递归回溯法//再考虑考虑剪枝classSolution{publicList>combinationSum(int[]candidates,inttarget){List
- 深入浅出机器学习:概念、算法与实践
倔强的小石头_
AI机器学习算法人工智能
目录引言机器学习的基本概念什么是机器学习机器学习的基本要素机器学习的主要类型监督学习(SupervisedLearning)无监督学习(UnsupervisedLearning)强化学习(ReinforcementLearning)机器学习的一般流程总结引言在当今数字化时代,数据量呈爆炸式增长。机器学习作为一门多领域交叉学科,致力于让计算机系统从数据中自动学习模式和规律,进而实现对未知数据的预测和
- 蓝禾,oppo,游卡,汤臣倍健,康冠科技,作业帮,高途教育25届春招内推
weixin_53585422
求职招聘算法嵌入式硬件java前端
蓝禾,oppo,游卡,汤臣倍健,康冠科技,作业帮,高途教育25届春招内推①康冠科技【职位】算法、软件、硬件、技术,结构设计,供应链,产品,职能,商务【一键内推】https://sourl.cn/2Mm9Lk【内推码】EVBM88②蓝禾(秋招投过还可投)【岗位】国内/国际电商运营,设计,营销,职能,工作地:深圳【请选择“校园大使推荐码”】71T3HES【一键内推】https://sourl.cn/6
- 【机器学习算法选型:分类与回归】 常见分类算法介绍
云博士的AI课堂
哈佛博后带你玩转机器学习机器学习分类回归分类与回归机器学习算法选型深度学习人工智能
第2节:常见分类算法介绍在机器学习中,分类算法是用于预测一个样本所属类别的工具。无论是在金融风控、医疗诊断、图像识别还是推荐系统等领域,分类算法都扮演着至关重要的角色。不同的分类算法各自有不同的优缺点和应用场景,因此了解这些算法的特点及其适用条件,是构建高效分类模型的关键。1.逻辑回归(LogisticRegression)介绍逻辑回归是一种广泛应用于二分类问题的线性模型,其目标是根据输入特征预测
- MD5解密为什么不能成功(解密算法)
浪九天
算法Javajava算法
MD5解密为什么不能成功(解密算法)首先MD5的密文数量36的32次方;不加盐,不迭代,A-Z,a-z,0-9,8-16位密码,计算量:62的8次方至62的16次方工具类暴力算法结合数据库实现补充说明(原因)生成密文的工具类packagecom.decrypt;importorg.apache.shiro.crypto.hash.SimpleHash;publicclassDecyrpt{priv
- 头部C9科班本硕研二,拿到大模型算法岗
大模型与自然语言处理
NLP与大模型人工智能大模型深度学习面试题算法暑期实习
是时候准备春招和实习了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。总结链接如下:《大模型面试宝典》(2025版)发布!喜欢本文记得收藏、关注、点赞。bg:头部C9科班本硕研二,2中厂大模型应用相关实习年前最后几天,拿到了Offer,面试感觉从一到三面压力逐
- 「En」通过DeepSeek生成雅思英语考试学习计划
何曾参静谧
「En」英语从零到一学习英语
✨博客主页何曾参静谧的博客(✅关注、点赞、⭐收藏、转发)全部专栏(专栏会有变化,以最新发布为准)「Win」Windows程序设计「IDE」集成开发环境「定制」定制开发集合「C/C++」C/C++程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」BlockUI集合「Py」Python程序设计「Math」探秘数学世界「PK」Paras
- 1.python实现二分查找(力扣刷题)
踏雪1352
leetcode算法python
二分查找(BinarySearch),也称为折半查找,是一种高效的查找算法,适用于在有序数组中查找特定元素。其基本思想是通过将查找范围逐步减半来快速定位目标值。题目力扣704题二分查找力扣35题搜索插入位置力扣34题在排序数组中查找元素的第一个和最后一个位置力扣69题x的平方根力扣367题有效的完全平方数1.力扣704题二分查找题目给定一个n个元素有序的(升序)整型数组nums和一个目标值targ
- ε-贪心算法:在探索与利用之间寻找平衡
Chen_Chance
贪心算法算法
ε-贪心算法:在探索与利用之间寻找平衡在强化学习领域,智能体需要在环境中采取行动以最大化累积奖励。这个过程涉及到两个关键的决策因素:探索(exploration)和利用(exploitation)。探索是指尝试新的行为以发现更好的策略;而利用是指采用已知的最佳行为以获得奖励。ε-贪心算法正是为了在这两个因素之间找到一个平衡点。ε-贪心算法的基本原理ε-贪心算法的核心思想非常简单:以概率ϵ\epsi
- 最少硬币问题--贪心算法
春哥一号
贪心算法算法
设有n种不同面值的硬币,各硬币的面值存于数组T〔1:n〕中。现要用这些面值的硬币来找钱。可以使用的各种面值的硬币个数存于数组Coins〔1:n〕中。对任意钱数0≤m≤20001,设计一个用最少硬币找钱m的方法。用改进的贪心算法解决最少硬币问题,暂称之为贪心枚举法.由贪心算法可知尽量用大面值的硬币组合来找钱,可以使使用的硬币最少。而贪心算法对最少硬币问题的解决总是可以得到最优解很好的近似解。本算法就
- DiskGenius Professional 5.6.1.1580 X64 单文件 中文版 下载(已注册)
S3软件
工具补丁diskgenius
单文件,免安装,直接用~DiskGenius硬盘坏道修复工具比Fdisk更灵活的分区操作,强大的分区重建功能。同时DiskGenius(硬盘坏道修复工具)提供了堪称经典的丢失分区恢复功能、完善的误删除文件恢复功能、各种原因导致的分区损坏文件恢复功能。特别是专业版的数据恢复功能算法精湛、考虑周全,并仍在不断优化增强中。DiskGenius软件特色1、支持传统的MBR分区表格式及较新的GUID分区表格
- 我国计算机发展历程简述,简述计算机的发展历程??
三三俩俩
我国计算机发展历程简述
life大林子的回答1、第一代计算机(1946~1958)电子管为基本电子器件;使用机器语言和汇编语言;主要应用于国防和科学计算;运算速度每秒几千次至几万次。2、第二代计算机(1958~1964)晶体管为主要器件;软件上出现了操作系统和算法语言;运算速度每秒几万次至几十万次。3、第三代计算机(1964~1971)普遍采用集成电路;体积缩小;运算速度每秒几十万次至几百万次。4、第四代计算机(1971
- C语言图像处理技术:从基础到高级应用
南城游子
本文还有配套的精品资源,点击获取简介:C语言在图像处理领域拥有丰富的应用,涉及计算机视觉和数字信号处理。本课程深入探讨C语言进行图像处理的各项核心技术,包括像素操作、色彩模型理解、滤波算法、色彩空间转换、边缘检测、以及图像变换等。通过详细解析,学习者将掌握如何使用C语言和OpenCV库来实现高效的图像处理,并能够解决实际问题。1.像素操作与图像基本组成数字图像处理是现代计算机视觉和图像理解的基础,
- 想象一个AI保姆机器人使用场景分析
风口猪炒股指标
我的思想大火拼人工智能机器人DeepSeek深度思考
把我的一个想象AI保姆机器人使用场景用DeepSeek和Kimi进行深度思考,下面2张图分别是kimi和ds的思维链。我觉得ds的总结一如既往的优秀。关于AI是否具备智慧的判断与伦理反思一、AI的“智慧”本质:能力与局限当前AI的技术边界无自主意识:现有AI系统(如ChatGPT、机器人保姆)本质是基于数据和算法的模式匹配工具,不具备自我意识、情感或道德判断能力。其所有输出均由训练数据与程序逻辑驱
- 使用Scikit-Learn决策树:分类问题解决方案指南
范范0825
scikit-learn决策树分类
如何用scikit-learn的决策树分类器解决分类问题1.引言在本教程中,我们将探讨如何使用scikit-learn(sklearn)库中的决策树分类器解决分类问题。决策树是一种强大的机器学习算法,能够根据输入数据的特征属性学习决策规则,并用于预测新数据的分类标签。2.理论基础与算法介绍2.1决策树算法概述决策树是一种树形结构,每个非叶节点表示一个特征属性上的决策,每个分支代表一个决策结果的可能
- 机器学习学习笔记(十七)—— 优化算法概述
lancetop-stardrms
机器学习机器学习
一、概观scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:1.非线性最优化fmin--简单Nelder-Mead算法fmin_powell--改进型Powell法fmin_bfgs--拟Newton法fmin_cg--非线性共
- 机器学习和深度学习有什么区别?
facaixxx2024
AI大模型机器学习深度学习人工智能
深度学习和机器学习有什么区别?深度学习是机器学习一个分支,机器学习包含深度学习。下面阿小云从定义、技术、数据需求、应用领域、模型复杂度和计算资源多维度来对比深度学习和机器学习的区别:二者的定义区别机器学习:是一种数据分析技术,通过算法使计算机能够在无明确编程的情况下进行学习和决策。深度学习:是机器学习的一个子领域,使用神经网络模型,尤其是深层神经网络模型,来处理、解释和分类数据。依赖算法和技术不同
- AI趋势下,软件测试工程师怎么拥抱AI
悠然的笔记本
人工智能
在AI趋势下,软件测试工程师怎么拥抱AI呢?以下是我的一些思考:一、掌握AI基础知识软件测试工程师需要学习机器学习、深度学习、自然语言处理等领域的基本原理和算法。这些基础知识有助于理解AI在测试中的应用基础,从而能够更好地利用AI技术提升测试效率和质量。二、掌握AI相关工具和技术编程语言:学习使用Python等编程语言,这是实现AI应用的常用工具之一。框架:掌握TensorFlow、PyTorch
- 什么是机器学习?
CM莫问
机器学习模型机器学习人工智能算法
一、概念(维基百科)机器学习是人工智能的一个分支。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。二、主要特点机器学习的主要特点包括:1、数据驱动:机器学习模型的性能主要依赖于输入的数据。数据的质量和数量直接影响模型的准确性和泛化能力,所谓“Garbagein,garbag
- 机器学习,我们主要学习什么?
悠然的笔记本
机器学习机器学习
机器学习的发展历程机器学习的发展历程,大致分为以下几个阶段:1.起源与早期探索(20世纪40年代-60年代)1949年:Hebb提出了基于神经心理学的学习机制,开启了机器学习的先河1950年代:机器学习的起源与人工智能的探索紧密相连。例如,1956年,达特茅斯会议标志着人工智能的诞生,机器学习作为其重要分支也开始受到关注1960年代:出现了早期的机器学习算法,如1967年诞生的K最近邻算法(KNN
- 多目标应用:基于自组织分群的多目标粒子群优化算法(SS-MOPSO)的移动机器人路径规划研究(提供MATLAB代码)
IT猿手
机器人路径规划多目标优化算法多目标应用前端多目标算法人工智能matlab算法路径规划
一、机器人路径规划介绍移动机器人(Mobilerobot,MR)的路径规划是移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路
- 非支配性排序遗传算法 III---NSGA-III-可用于(多目标模型融合/特征选择与降维/图像多目标优化处理)
ww18000
r语言开发语言数据挖掘机器学习
非支配性排序遗传算法III(NSGA-III)是用于求解多目标优化问题的一种进化算法1。以下是对它的具体介绍1:具体完整算法请跳转:非支配性排序遗传算法III---NSGA-III-可用于(多目标模型融合/特征选择与降维/图像多目标优化处理)发展背景NSGA-III由KalyanmoyDeb和HarshitJain提出,是在NSGA-II的基础上进行改进和扩展,以更好地处理多目标优化问题,尤其是在
- 数据结构——排序(交换排序)
c++
目录一、交换排序的总体概念二、冒泡排序三、快速排序1.挖坑法2.左右指针3.前后指针一、交换排序的总体概念交换排序是一类排序算法,它的核心思想是通过交换元素的位置来达到排序的目的。在排序过程中,比较数组中的元素对,如果它们的顺序不符合排序要求,就交换它们的位置。在这里主要讲冒泡排序和快速排序。二、冒泡排序基本概念:冒泡排序是一种简单的交换排序算法。它的基本思想是通过反复比较相邻的元素,根据排序要求
- 负载均衡算法分类以及它们的优缺点
xiaobai166
负载均衡
负载均衡算法分类任务平分类:负载均衡系统将收到的任务平均分配给服务器进行处理,这里的“平均”可以是绝对数量的平均,也可以是比例或者权重上的平均。负载均衡类:负载均衡系统根据服务器的负载来进行分配,这里的负载并不一定是通常意义上我们说的“CPU负载”,而是系统当前的压力,可以用CPU负载来衡量,也可以用连接数、I/O使用率、网卡吞吐量等来衡量系统的压力。性能最优类:负载均衡系统根据服务器的响应时间来
- 使用Python实现量子电路模拟:走进量子计算的世界
Echo_Wish
Python进阶量子计算python开发语言
量子计算作为一项前沿科技,因其能够解决经典计算无法应对的复杂问题而备受关注。通过量子电路模拟,我们可以在经典计算机上模拟量子计算过程,从而进行量子算法的研究和验证。Python作为一种强大且易用的编程语言,为量子电路模拟提供了丰富的库和工具。本文将详细介绍如何使用Python实现量子电路模拟,涵盖环境配置、依赖安装、量子电路构建、模拟与测量和实际应用案例等内容。项目概述本项目旨在使用Python构
- 《数据结构基础操作:从代码层面深入剖析链表、栈与队列》
Oracle_666
数据结构
引言在计算机编程的世界里,数据结构是构建高效算法和程序的核心要素。链表、栈和队列作为基础且重要的数据结构,广泛应用于各种软件开发场景中。本文将结合具体代码,详细解读双向链表的插入与删除、顺序栈和循环队列的基本操作、链表合并以及删除链表倒数第N个节点的实现逻辑和代码细节。1.双向链表插入与删除操作的代码实现1.1.双向链表节点结构定义//定义双向链表节点结构//双向链表的每个节点包含三部分:数据域、
- 算法基础 -- 区间和
CyberXavier
数据结构算法基础算法
区间和假定有一个无限长的数轴,数轴上每个坐标上的数都是0。现在,我们首先进行n次操作,每次操作将某一位置x上的数加c。接下来,进行m次询问,每个询问包含两个整数l和r,你需要求出在区间[l,r]之间的所有数的和。输入格式第一行包含两个整数n和m。接下来n行,每行包含两个整数x和c。再接下来m行,每行包含两个整数l和r。输出格式共m行,每行输出一个询问中所求的区间内数字和。数据范围−10^9≤x≤1
- 基于量子旋转门的量子粒子群算法:突破粒子群算法局限的高效优化方法
m0_57781768
算法量子计算
基于量子旋转门的量子粒子群算法:突破粒子群算法局限的高效优化方法在现代优化算法中,粒子群算法(PSO)因其简单易实现且高效的特点而被广泛应用。然而,传统粒子群算法在处理复杂优化问题时,常常会陷入局部最优解,无法找到全局最优解。为了解决这一问题,研究人员提出了一种基于量子旋转门的量子粒子群算法(QPSO),通过引入量子计算的思想和技术,有效地克服了传统PSO的局限性。本文将详细介绍量子粒子群算法的基
- 链表经典应用(一)
一只冯冯
手搓数据结构课程代码算法c++数据结构c语言后端
链表相关算法结构体交叉合并(带头结点)求链表的中间结点(快慢指针法)逆置单链表(带头结点)判断回文链表(带头结点):取中间结点+逆置+比对判断环形链表(快慢指针法)判断相交链表,返回相交结点结构体typedefstructLNode{intdata;structLNode*next;}LNode,*LinkList;交叉合并(带头结点)//交叉合并(带头结点)voidMerge(LinkList&
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =