这个要介绍一下,有三种方式计算误差,
1.索引值对应,intensity存储欧氏距离平方,rmse均方误差
2.以最近点为对应点,计算的方法同上
3.源点云与其在目标云中最近邻确定的平面上的投影进行配对。注意:目标云需要包含法线。
话不多说,直接上代码
#include
#include
#include
#include
#include
#include
#include
#include
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
std::string default_correspondence_type = "index";
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s source.pcd target.pcd output_intensity.pcd \n" , argv[0]);
print_info (" where options are:\n");
print_info (" -correspondence X = the way of selecting the corresponding pair in the target cloud for the current point in the source cloud\n");
print_info (" options are: index = points with identical indices are paired together. Note: both clouds need to have the same number of points\n");
print_info (" nn = source point is paired with its nearest neighbor in the target cloud\n");
print_info (" nnplane = source point is paired with its projection on the plane determined by the nearest neighbor in the target cloud. Note: target cloud needs to contain normals\n");
print_info (" (default: ");
print_value ("%s", default_correspondence_type.c_str ()); print_info (")\n");
}
bool
loadCloud (const std::string &filename, pcl::PCLPointCloud2 &cloud)
{
TicToc tt;
// print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, cloud) < 0)
return (false);
// print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" seconds : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
// print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());
return (true);
}
void
compute (const pcl::PCLPointCloud2::ConstPtr &cloud_source, const pcl::PCLPointCloud2::ConstPtr &cloud_target,
pcl::PCLPointCloud2 &output, std::string correspondence_type)
{
// Estimate
TicToc tt;
tt.tic ();
PointCloud<PointXYZ>::Ptr xyz_source (new PointCloud<PointXYZ> ());
fromPCLPointCloud2 (*cloud_source, *xyz_source);
PointCloud<PointXYZ>::Ptr xyz_target (new PointCloud<PointXYZ> ());
fromPCLPointCloud2 (*cloud_target, *xyz_target);
PointCloud<PointXYZI>::Ptr output_xyzi (new PointCloud<PointXYZI> ());
output_xyzi->points.resize (xyz_source->points.size ());
output_xyzi->height = cloud_source->height;
output_xyzi->width = cloud_source->width;
float rmse = 0.0f;
if (correspondence_type == "index")
{
// print_highlight (stderr, "Computing using the equal indices correspondence heuristic.\n");
if (xyz_source->points.size () != xyz_target->points.size ())
{
print_error ("Source and target clouds do not have the same number of points.\n");
return;
}
for (size_t point_i = 0; point_i < xyz_source->points.size (); ++point_i)
{
if (!pcl_isfinite (xyz_source->points[point_i].x) || !pcl_isfinite (xyz_source->points[point_i].y) || !pcl_isfinite (xyz_source->points[point_i].z))
continue;
if (!pcl_isfinite (xyz_target->points[point_i].x) || !pcl_isfinite (xyz_target->points[point_i].y) || !pcl_isfinite (xyz_target->points[point_i].z))
continue;
float dist = squaredEuclideanDistance (xyz_source->points[point_i], xyz_target->points[point_i]);
rmse += dist;
output_xyzi->points[point_i].x = xyz_source->points[point_i].x;
output_xyzi->points[point_i].y = xyz_source->points[point_i].y;
output_xyzi->points[point_i].z = xyz_source->points[point_i].z;
output_xyzi->points[point_i].intensity = dist;
}
rmse = std::sqrt (rmse / static_cast<float> (xyz_source->points.size ()));
}
else if (correspondence_type == "nn")
{
// print_highlight (stderr, "Computing using the nearest neighbor correspondence heuristic.\n");
KdTreeFLANN<PointXYZ>::Ptr tree (new KdTreeFLANN<PointXYZ> ());
tree->setInputCloud (xyz_target);
for (size_t point_i = 0; point_i < xyz_source->points.size (); ++ point_i)
{
if (!pcl_isfinite (xyz_source->points[point_i].x) || !pcl_isfinite (xyz_source->points[point_i].y) || !pcl_isfinite (xyz_source->points[point_i].z))
continue;
std::vector<int> nn_indices (1);
std::vector<float> nn_distances (1);
if (!tree->nearestKSearch (xyz_source->points[point_i], 1, nn_indices, nn_distances))
continue;
size_t point_nn_i = nn_indices.front();
float dist = squaredEuclideanDistance (xyz_source->points[point_i], xyz_target->points[point_nn_i]);
rmse += dist;
output_xyzi->points[point_i].x = xyz_source->points[point_i].x;
output_xyzi->points[point_i].y = xyz_source->points[point_i].y;
output_xyzi->points[point_i].z = xyz_source->points[point_i].z;
output_xyzi->points[point_i].intensity = dist;
}
rmse = std::sqrt (rmse / static_cast<float> (xyz_source->points.size ()));
}
else if (correspondence_type == "nnplane")
{
// print_highlight (stderr, "Computing using the nearest neighbor plane projection correspondence heuristic.\n");
PointCloud<Normal>::Ptr normals_target (new PointCloud<Normal> ());
fromPCLPointCloud2 (*cloud_target, *normals_target);
KdTreeFLANN<PointXYZ>::Ptr tree (new KdTreeFLANN<PointXYZ> ());
tree->setInputCloud (xyz_target);
for (size_t point_i = 0; point_i < xyz_source->points.size (); ++ point_i)
{
if (!pcl_isfinite (xyz_source->points[point_i].x) || !pcl_isfinite (xyz_source->points[point_i].y) || !pcl_isfinite (xyz_source->points[point_i].z))
continue;
std::vector<int> nn_indices (1);
std::vector<float> nn_distances (1);
if (!tree->nearestKSearch (xyz_source->points[point_i], 1, nn_indices, nn_distances))
continue;
size_t point_nn_i = nn_indices.front();
Eigen::Vector3f normal_target = normals_target->points[point_nn_i].getNormalVector3fMap (),
point_source = xyz_source->points[point_i].getVector3fMap (),
point_target = xyz_target->points[point_nn_i].getVector3fMap ();
float dist = normal_target.dot (point_source - point_target);
rmse += dist * dist;
output_xyzi->points[point_i].x = xyz_source->points[point_i].x;
output_xyzi->points[point_i].y = xyz_source->points[point_i].y;
output_xyzi->points[point_i].z = xyz_source->points[point_i].z;
output_xyzi->points[point_i].intensity = dist * dist;
}
rmse = std::sqrt (rmse / static_cast<float> (xyz_source->points.size ()));
}
else
{
// print_error ("Unrecognized correspondence type. Check legal arguments by using the -h option\n");
return;
}
toPCLPointCloud2 (*output_xyzi, output);
// print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" seconds]\n");
print_highlight ("RMSE Error: %f\n", rmse);
}
void
saveCloud (const std::string &filename, const pcl::PCLPointCloud2 &output)
{
TicToc tt;
tt.tic ();
// print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
pcl::io::savePCDFile (filename, output);
// print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" seconds : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
/* ---[ */
int
main (int argc, char** argv)
{
// print_info ("Compute the differences between two point clouds and visualizing them as an output intensity cloud. For more information, use: %s -h\n", argv[0]);
if (argc < 4)
{
printHelp (argc, argv);
return (-1);
}
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 3)
{
print_error ("Need two input PCD files and one output PCD file to continue.\n");
return (-1);
}
// Command line parsing
std::string correspondence_type = default_correspondence_type;
parse_argument (argc, argv, "-correspondence", correspondence_type);
// Load the first file
pcl::PCLPointCloud2::Ptr cloud_source (new pcl::PCLPointCloud2 ());
if (!loadCloud (argv[p_file_indices[0]], *cloud_source))
return (-1);
// Load the second file
pcl::PCLPointCloud2::Ptr cloud_target (new pcl::PCLPointCloud2 ());
if (!loadCloud (argv[p_file_indices[1]], *cloud_target))
return (-1);
pcl::PCLPointCloud2 output;
// Perform the feature estimation
compute (cloud_source, cloud_target, output, correspondence_type);
// Output the third file
saveCloud (argv[p_file_indices[2]], output);
}
来源:PCL官方示例