从0到1,反距离加权IDW(Inverse Distance Weighted Interpolation) 插值变形算法

论文

Image Warping with Scattered Image Warping with Scattered Data Interpolation

局部变形算法:液化,膨胀

全局变形算法:IDW,MLS,特征线变形

算法思路

从0到1,反距离加权IDW(Inverse Distance Weighted Interpolation) 插值变形算法_第1张图片

算法优缺点

优点:实现简单,cpu实现,gpu实现都友好

缺点:速度与点的个数,图片长,宽,这3个指标成正比,点个数越多,速度越慢,图片越大速度越慢。如果点太少,形变会不平滑。

应用场景

大脸,瘦脸,大眼,等任何形变场景

基本实现

好处,更容易结合公式看清原理,缺点,速度很慢。

class IDW(object):
    def __init__(self,):
        pass

    def IDW(self, srcImg, input_points, output_points):
        start = time.time()
        height, width, _ = srcImg.shape
        keypoints_num = len(input_points)
        
        u = 2
        UX =  np.expand_dims(np.vstack([np.arange(width).astype(np.float32).reshape(1, -1)] * height), axis = 2)
        UY =  np.expand_dims(np.hstack([np.arange(height).astype(np.float32).reshape(-1, 1)] * width), axis = 2)

        input_points_X = np.ones((height,width,keypoints_num), np.float32) * input_points[:,0]
        input_points_Y = np.ones((height,width,keypoints_num), np.float32) * input_points[:,1]
        output_points_X = np.ones((height,width,keypoints_num), np.float32) * output_points[:,0]
        output_points_Y = np.ones((height,width,keypoints_num), np.float32) * output_points[:,1]


        v_tmp = np.power( (UX - input_points_X)*(UX - input_points_X) + (UY - input_points_Y)*(UY - input_points_Y), u)
        for k in range(keypoints_num):
            v_tmp[input_points[k,1],input_points[k,0],:] = 1

        v = 1/v_tmp
        ww = np.expand_dims(1/np.sum(v,axis = 2), axis =2)
        UX = np.squeeze( (np.sum(v*(output_points_X + UX - input_points_X), axis = 2, keepdims=True)) * ww).astype(np.float32)
        UY = np.squeeze( (np.sum(v*(output_points_Y + UY - input_points_Y), axis = 2, keepdims=True)) * ww).astype(np.float32)

        copyImg = cv2.remap(srcImg, UX, UY, interpolation=cv2.INTER_LINEAR)
        end = time.time()
        print("IDW time cost:{} s".format(end - start))
        return copyImg

numba向量化加速实现

好处,基于向量化实现,速度更快,缺点,没有足够快 

from numba import jit, vectorize, int64, float64, njit, prange
    def IDW(self, srcImg, input_points, output_points):
        @vectorize([float64(float64,float64, float64, float64, int64)], target='parallel')
        def l2_power_numba(UX, input_points_X, UY, input_points_Y, u):
            tmp_x = UX - input_points_X
            tmp_y = UY - input_points_Y
            ux_sum = tmp_x * tmp_x
            uy_sum = tmp_y * tmp_y
            if u==1:
                return ux_sum + uy_sum
            else:
                return np.power(ux_sum + uy_sum, u)


        @vectorize([float64(float64)], target='parallel')
        def div_numba(v_tmp):
            return 1/v_tmp


        start = time.time()
        height, width, _ = srcImg.shape
        keypoints_num = len(input_points)
        
        u = 2

        UX =  np.expand_dims(np.vstack([np.arange(width).astype(np.float32).reshape(1, -1)] * height), axis = 2)
        UY =  np.expand_dims(np.hstack([np.arange(height).astype(np.float32).reshape(-1, 1)] * width), axis = 2)

        input_points_X = np.ones((1,1,keypoints_num), np.float32)
        input_points_X = input_points[:,0]
        input_points_Y = np.ones((1,1,keypoints_num), np.float32)
        input_points_Y = input_points[:,1]
        output_points_X = np.ones((1,1,keypoints_num), np.float32)
        output_points_X = output_points[:,0]
        output_points_Y = np.ones((1,1,keypoints_num), np.float32)
        output_points_Y = output_points[:,1]


        v_tmp = l2_power_numba(UX, input_points_X, UY, input_points_Y, u)


        for k in range(keypoints_num):
            v_tmp[input_points[k,1],input_points[k,0],:] = v_tmp[input_points[k,1]-1,input_points[k,0]-1,:]


        v = div_numba(v_tmp)
        ww = np.expand_dims(1/np.sum(v,axis = 2), axis =2)

    
        UX = np.squeeze( UX + np.sum(v * (output_points_X- input_points_X), axis=2, keepdims=True) * ww).astype(np.float32)
        UY = np.squeeze( UY + np.sum(v * (output_points_Y- input_points_Y), axis=2, keepdims=True) * ww).astype(np.float32)


        copyImg = cv2.remap(srcImg, UX, UY, interpolation=cv2.INTER_LINEAR)
        end = time.time()
        print("IDW FAST time cost:{} s".format(end - start))

        return copyImg

cpu最佳加速实现

好处,基于scipy加速计算距离,公式合并,减少一次乘法,2d矩阵变1d矩阵。

from scipy.spatial.distance import cdist
class IDW(object):
    def __init__(self,
                 original_control_points=None,
                 deformed_control_points=None,
                 power=1):

        if original_control_points is None:
            self.original_control_points = np.array([[0., 0., 0.], [0., 0., 1.],
                                                     [0., 1., 0.], [1., 0., 0.],
                                                     [0., 1., 1.], [1., 0., 1.],
                                                     [1., 1., 0.], [1., 1.,
                                                                    1.]])
        else:
            self.original_control_points = original_control_points

        if deformed_control_points is None:
            self.deformed_control_points = np.array([[0., 0., 0.], [0., 0., 1.],
                                                     [0., 1., 0.], [1., 0., 0.],
                                                     [0., 1., 1.], [1., 0., 1.],
                                                     [1., 1., 0.], [1., 1.,
                                                                    1.]])
        else:
            self.deformed_control_points = deformed_control_points

        self.power = power

    def __call__(self, src_pts):

        displ = self.deformed_control_points - self.original_control_points

        dist = cdist(src_pts, self.original_control_points, metric='sqeuclidean')
        dist = dist** self.power

        # Weights are set as the reciprocal of the distance if the distance is
        # not zero, otherwise 1.0 where distance is zero.
        dist[dist == 0.0] = 1
        weights = 1. / dist
        #weights[dist == 0.0] = 1.0

        offset = np.dot(weights, displ) / np.sum(weights, axis=1, keepdims=True)
        return src_pts + offset


def IDW_cpu(self, srcImg, input_points, output_points):
    start = time.time()

    idw = IDW(original_control_points=input_points.astype(np.float64), deformed_control_points=output_points.astype(np.float64), power=3)

    h, w = srcImg.shape[:-1]
    x = np.empty((h, w), np.float64)
    x[:, :] = np.arange(w)
    y = np.empty((h, w), np.float64)
    y[:, :] = np.arange(h)[:, np.newaxis]
    mesh = np.array([x.ravel(), y.ravel()])
    mesh = mesh.T

    new_mesh = idw(mesh.astype(np.float64))
    UX = new_mesh[:,0].reshape(h,w).astype(np.float32)
    UY = new_mesh[:,1].reshape(h,w).astype(np.float32)
    copyImg = cv2.remap(srcImg, UX, UY, interpolation=cv2.INTER_LINEAR)

    end = time.time()
    print("IDW time cost:{} s".format(end - start))
return copyImg

pytorch基于cuda加速实现

好处,基于最佳cpu版本实现,基于pytorch实现加速,速度快的一逼。缺点,图片太大,注意显存开销。解决思路,使用pytorch1.8以上版本,进行显存设置。当然也可以考虑tensorflow基于静态图的优化。

torch.cuda.set_per_process_memory_fraction(0.5, 0)
参数1:fraction 限制的上限比例,如0.5 就是总GPU显存的一半,可以是0~1的任意float大小;
参数2:device 设备号; 如0 表示GPU卡 0号;
class IDW_TORCH(object):
    def __init__(self,
                 original_control_points=None,
                 deformed_control_points=None,
                 power=1):

        if torch.cuda.is_available():
            device = "cuda"
        else:
            device = "cpu"
        self.original_control_points = original_control_points.to(device)

        self.deformed_control_points = deformed_control_points.to(device)

        self.power = power
        self.device = device

    def __call__(self, src_pts):

        src_pts = src_pts.to(self.device)
        displ = self.deformed_control_points - self.original_control_points

        dist = torch.cdist(src_pts, self.original_control_points)

        dist = dist ** (self.power*2)

        # Weights are set as the reciprocal of the distance if the distance is
        # not zero, otherwise 1.0 where distance is zero.
        dist[dist == 0.0] = 1
        weights = 1. / dist

        offset = torch.matmul(weights, displ) / torch.sum(weights, axis=1, keepdims=True)
        return src_pts + offset

def IDW_torch(self, srcImg, input_points, output_points):
    start = time.time()
    idw = IDW_TORCH(original_control_points=torch.from_numpy(input_points.astype(np.float32)),
          deformed_control_points=torch.from_numpy(output_points.astype(np.float32)),
          power=3)

    h, w = srcImg.shape[:-1]
    x = torch.empty((h, w))
    x[:, :] = torch.arange(w)
    y = torch.empty((h, w))
    y[:, :] = torch.arange(h)[:, np.newaxis]
    #mesh = torch.vstack([x.flatten(), y.flatten()]).T
    mesh = torch.stack([x.flatten(), y.flatten()], dim=1)

    new_mesh = idw(mesh.float()).cpu().numpy()


    UX = new_mesh[:,0].reshape(h,w).astype(np.float32)
    UY = new_mesh[:,1].reshape(h,w).astype(np.float32)


    self.idwUX = UX
    self.idwUY = UY

    copyImg = cv2.remap(srcImg, UX, UY, interpolation=cv2.INTER_LINEAR)

    end = time.time()
    print("IDW TORCH time cost:{} s".format(end - start))
return copyImg

上面所有代码 input_points, output_points,2个矩阵的维度都是(n,2),n表示点的个数。坐标就是n个点的x,y坐标。只需要拿到人脸图片上,变换前的坐标位置,变换后的坐标位置,调用上面的函数就可以。生成图片基于opencv自带函数cv2.remap,更加高效。

大眼瘦脸运行效果

从0到1,反距离加权IDW(Inverse Distance Weighted Interpolation) 插值变形算法_第2张图片

你可能感兴趣的:(人脸增强,图像处理,pytorch,机器学习,算法)