深度学习 —— 偏差与方差

概念定义

  • 偏差(bias):偏差衡量了模型的预测值与实际值之间的偏离关系。通常在深度学习中,我们每一次训练迭代出来的新模型,都会拿训练数据进行预测,偏差就反应在预测值与实际值匹配度上,比如通常在keras运行中看到的准确度为96%,则说明是低偏差;反之,如果准确度只有70%,则说明是高偏差。
  • 方差(variance):方差描述的是训练数据在不同迭代阶段的训练模型中,预测值的变化波动情况(或称之为离散情况)。从数学角度看,可以理解为每个预测值与预测均值差的平方和的再求平均数。通常在深度学习训练中,初始阶段模型复杂度不高,为低方差;随着训练量加大,模型逐步拟合训练数据,复杂度开始变高,此时方差会逐渐变高

 

图形定义

深度学习 —— 偏差与方差_第1张图片

这是一张常见的靶心图。可以想象红色靶心表示为实际值,蓝色点集为预测值。在模型不断地训练迭代过程中,我们能碰到四种情况:

  • 低偏差,低方差:这是训练的理想模型,此时蓝色点集基本落在靶心范围内,且数据离散程度小,基本在靶心范围内;
  • 低偏差,高方差:这是深度学习面临的最大问题,过拟合了。也就是模型太贴合训练数据了,导致其泛化(或通用)能力差,若遇到测试集,则准确度下降的厉害;
  • 高偏差,低方差:这往往是训练的初始阶段;
  • 高偏差,高方差:这是训练最糟糕的情况,准确度差,数据的离散程度也差。

 

数学定义

误差 = 方差 + 偏差2 + 噪音 组成,一般来说,随着模型复杂度的增加,方差会逐渐增大,偏差会逐渐减小,见下图:

深度学习 —— 偏差与方差_第2张图片

 

过拟合、欠拟合和恰好

偏差的变化趋势相信大家都容易理解,随着模型的不断训练,准确度不断上升,自然偏差逐渐降低。但方差的变化趋势却不易理解,为何训练初始阶段是低方差,训练后期易是高方差?

  注意方差的数学公式为:E [(h(x) - h(x))2] ,也就是说为每个预测值与预测均值差的平方和再求平均数,可以表现为一种波动变化,低方差意味低变化,高方差意味高变化。那我们可以通过训练的不同阶段来直观感受方差的变化:

深度学习 —— 偏差与方差_第3张图片

上图为训练初始阶段,我们的模型(蓝线)对训练数据(红点)拟合度很差,是高偏差,但蓝线近似线性组合,其波动变化小,套用数学公式也可知数值较小,故为低方差,这个阶段也称之为欠拟合(underfitting),需要加大训练迭代数。

深度学习 —— 偏差与方差_第4张图片

 

上图为训练的后期阶段,可明显看出模型的拟合度很好,是低偏差,但蓝线的波动性非常大,为高方差,这个阶段称之为过拟合(overfitting),问题很明显,蓝线模型很适合这套训练数据,但如果用测试数据来检验模型,就会发现泛化能力差,准确度下降。

  因此我们需要两者之间的一个模型。

深度学习 —— 偏差与方差_第5张图片

上图这个蓝色模型可认为是“恰好”的一个模型,既能跟训练数据拟合,又离完美拟合保持一定距离,模型更具通用性,用测试数据验证会发现准确度也不错。

  这个模型怎么来呢?我们可以采取很多手段,比如:

  • 加大数据量,数据越多,自然其泛化能力也越强。但现实情况我们不能像大公司那样拥有很多资源,那怎么办?一种可行的办法就是根据已有的数据做数据增强,比如旋转、反转、白增强等操作造出很多数据;
  • 正则化(regularization,个人感觉中文翻译未能表达英文原义,应该是表达约束、调整的意思),通常来说有dropout、L2、L1等正则化手段;
  • 提早结束训练,防止训练过拟合化。

 

结论

由此看出,深度学习不但是一门科学,更像是一门艺术。我们选择一个好的模型,不断调整参数来跨越欠拟合,避免过拟合,建立心目中理想的“恰好”模型。这看上去更像一个不断升级打怪的经验之学,需要我们多多练习,但其背后支撑的数学原理也是需要我们去好好理解和掌握。 

你可能感兴趣的:(深度学习,深度学习,方差,偏差)