信号的平移和尺度变换matlab,基于matlab的信号与系统实验指导

a7f4a3f590493a1e451dd952a488fd7c.gif 基于matlab的信号与系统实验指导

(52页)

本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!

19.90 积分

基于MATLAB的信号与系统实验指导实验一连续时间信号在MATLAB中的表示一、实验目的1、学会运用MATLAB表示常用连续时间信号的方法2、观察并熟悉这些信号的波形和特性二、实验原理及实例分析1、信号的定义与分类2、如何表示连续信号连续信号的表示方法有两种;符号推理法和数值法。从严格意义上讲,MATLAB数值计算的方法不能处理连续时间信号。然而,可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能被MATLAB处理,并且能较好地近似表示连续信号。3、MATLAB提供了大量生成基本信号的函数。如(1)指数信号KEXPAT(2)正弦信号KSINWTPHI和KCOSWTPHI(3)复指数信号KEXPAIBT(4)抽样信号SINTPI注意在MATLAB中用与SAT类似的SINCT函数表示,定义为T/SINTIC??(5)矩形脉冲信号RECTPULST,WIDTH(6)周期矩形脉冲信号SQUARET,DUTY,其中DUTY参数表示信号的占空比DUTY,即在一个周期脉冲宽度(正值部分)与脉冲周期的比值。占空比默认为05。(7)三角波脉冲信号TRIPULST,WIDTH,SKEW,其中SKEW取值范围在11之间。(8)周期三角波信号SAWTOOTHT,WIDTH(9)单位阶跃信号YT0三、实验内容1、验证实验内容直流及上述9个信号2、程序设计实验内容(1)利用MATLAB命令画出下列连续信号的波形图。(A)4/3TCOS??(B)UE2T?(C)2TOS1?T(2)利用MATLAB命令画出复信号4/TJETF???的实部、虚部、模和辐角。四、实验报告要求1、格式实验名称、实验目的、实验原理、实验环境、实验内容、实验思考等2、实验内容程序设计实验部分源代码及运行结果图示。实验二连续时间信号在MATLAB中的运算一、实验目的1、学会运用MATLAB进行连续时间信号的时移、反褶和尺度变换;2、学会运用MATLAB进行连续时间信号微分、积分运算;3、学会运用MATLAB进行连续时间信号相加、相乘运算;4、学会运用MATLAB进行连续时间信号卷积运算。二、实验原理及实例分析1、信号的时移、反褶和尺度变换信号的平移、反转和尺度变换是针对自变量时间而言的,其数学表达式和波形变换中存在着一定的变化规律。从数学表达式上来看,信号的上述所有计算都是自变量的替换过程。所以在使用MATLAB进行连续时间信号的运算时,只需要进行相应的变量代换即可完成相关工作。2、连续时间信号的微分和积分符号运算工具箱有强大的积分运算和求导功能。连续时间信号的微分运算,可使用DIFF命令函数来完成,其语句格式为DIFFFUNCTION,‘VARIABLE’,N其中,FUNCTION表示需要进行求导运算的函数,或者被赋值的符号表达式;VARIABLE为求导运算的独立变量;N为求导阶数,默认值为一阶导数。连续时间信号积分运算可以使用INT命令函数来完成,其语句格式为INTFUNCTION,‘VARIABLE’,A,B其中,FUNCTION表示被积函数,或者被赋值的符号表达式;VARIABLE为积分变量;A为积分下限,B为积分上限,A和B默认时则求不定积分。3、信号的相加和相乘运算信号的相加和相乘是信号在同一时刻取值的相加和相乘。因此MATLAB对于时间信号的相加和相乘都是基于向量的点运算。4、连续信号的卷积运算卷积积分是信号与系统时域分析的重要方法之一。定义为???????2121DTFTFTF??MATLAB进行卷积计算可通过符号运算方法和数值计算方法实现。(1)MATLAB符号运算法求连续信号卷积从卷积定义出发,可以利用MATLAB符号运算法求卷积积分,但要注意积分变量和积分限的选取。例试用MATLAB符号运算法求卷积YTUTUT1UTUT1。(2)MATLAB数值计算法求连续信号的卷积例试用MATLAB数值计算法求信号2TUTF1??和TUETF3??的卷积。三、实验内容1、已知信号的波形(课本P11例题),画出?????2332??TFTFTFTF,,的波形图。2、使用微分命令求XSINLY?关于变量X的一阶导数;使用积分命令计算不定积分DAX?????????25,定积分??DEX??102。3、已知????TTFTF???8SIN,SIN21,使用命令画出两信号和及两信号乘积的波形图。其中,HZ?4、四、实验报告要求1、格式实验名称、实验目的、实验原理、实验环境、实验内容(上述4部分代码及结果图形)、实验思考等。实验三连续时间LTI系统的时域分析一、实验目的1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应二、实验原理及实例分析1、连续时间系统零输入响应和零状态响应的符号求解连续时间系统可以使用常系数微分方程来描述,其完全响应由零输入响应和零状态响应组成。MATLAB符号工具箱提供了DSOLVE函数,可以实现对常系数微分方程的符号求解,其调用格式为DSOLVE‘EQ1,EQ2’,’COND1,COND2,’,’V’其中参数EQ表示各个微分方程,它与MATLAB符号表达式的输入基本相同,微分和导数的输入是使用DY,D2Y,D3Y来表示Y的一价导数,二阶导数,三阶导数;参数COND表示初始条件或者起始条件;参数V表示自变量,默认是变量T。通过使用DSOLVE函数可以求出系统微分方程的零输入响应和零状态响应,进而求出完全响应。实例1试用MATLAB命令求齐次微分方程02?????TYT的零输入响应,已知起始条件为0,1,0???????YY。注意,程序中绘图的时间区间一定要T0,本程序中取0,8,程序运行后结果如下。2、连续时间系统零状态响应的数值求解在实际工程中使用较多的是数值求解微分方程。对于零输入响应来说,其数值解可以通过函数INITIAL来实现,而该函数中的参量必须是状态变量所描述的系统模型,由于现在还没有学习状态变量相关内容,所以此处不做说明。对于零状态响应,MATLAB控制系统工具箱提供了对LTI系统的零状态响应进行数值仿真的函数LSIM,利用该函数可以求解零初始条件下的微分方程的数值解。其调用格式为YLSIMSYS,F,T,其中T表示系统响应的时间抽样点向量,F是系统的输入向量;SYS表示LTI系统模型,用来表示微分方程、差分方程或状态方程。在求解微分方程时,SYS是有TF函数根据微分方程系数生成的系统函数对象,其语句格式为SYSTFA,B。其中,A和B分别为微分方程右端和左端的系数向量。例如,对于微分方程0'1'2'30'1'2'3TFBTFTFBFTYATTYAT?????可以使用,,,,012303ATSYB?获得其LTI模型。注意,如果微分方程的左端或者右端表达式有缺项,则其向量A或者B中对应元素应该为零,不能省略不写。3、连续时间系统冲激响应和阶跃响应的求解在连续时间LTI系统中,冲激响应和阶跃响应是系统特性的描述。在MATLAB中,对于冲激响应和阶跃响应的数值求解,可以使用控制工具箱中提供的函数IMPULSE和STEP来求解。,TSYTEPIMUL?其中T表示系统响应的时间抽样点向量,SYS表示LTI系统模型。三、实验内容1、已知系统的微分方程和激励信号,使用MATLAB命令画出系统的零状态响应和零输入响应(零状态响应分别使用符号法和数值法求解,零输入响应只使用符号法求解)。要求题目2必做,题目1选做。2、已知系统的微分方程,使用MATLAB命令画出系统的冲激响应和阶跃响应(数值法)。要求题目2必做,题目1选做。四、实验报告要求1、格式实验名称、实验目的、实验原理、实验环境、实验内容(上述几部分代码及结果图形)、实验思考等。实验四傅里叶变换FT及其性质一、实验目的1、学会运用MATLAB求连续时间信号的傅里叶2、学会运用MATLAB求连续时间信号的频谱图3、学会运用MATLAB分析连续时间信号的傅里叶变换的性质二、实验原理及实例分析(一)傅里叶变换的实现例1用MATLAB符号运算求解法求单边指数信号2TUETF??的FT。例2用MATLAB符号运算求解法求21???JF的IFT。例3用MATLAB命令绘出例1中单边指数数信号的频谱图。例4用MATLAB命令求图示三角脉冲的FT,并画出其幅度谱。例5用MATLAB数值计算法求例3的三角脉冲幅度频谱图。(二)FT的性质1、尺度变换例6设矩形信号50???TUTF,利用MATLAB命令绘出该信号及其频谱图。同时绘出2/T和的频谱图,并加以比较。下面利用MATLAB将常规矩形脉冲信号的频谱和其调制信号(课本例34信号)频谱进行比较。MATLAB源程序如下傅里叶变换的其它性质可用类似的方法验证,希望大家课下练习。三、实验内容注意1写代码时J?I3、分别利用MATLAB符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图。4、已知门函数自身卷积为三角波信号,试用MATLAB命令验证FT的时域卷积定理。四、实验报告要求实验名称、实验目的、实验原理、实验环境、实验内容(上述几部分代码及结果图形)、实验思考等。实验五信号抽样及抽样定理一、实验目的1学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析2学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化3学会运用MATLAB对抽样后的信号进行重建二、实验原理及实例分析(一)信号抽样信号抽样是利用抽样脉冲序列TP从连续信号TF中抽取一系列的离散值,通过抽样过程得到的离散值信号称为抽样信号,记为S。从数学上讲,抽样过程就是信号相乘的过程,即TPFTFS??因此,可以使用傅里叶变换的频域卷积性质来求抽样信号TFS的频谱。常用的抽样脉冲序列有周期矩形脉冲序列和周期冲激脉冲序列。上式表明,信号在时域被抽样后,它的频谱是原连续信号频谱以抽样角频率为间隔周期的延拓,即信号在时域抽样或离散化,相当于频域周期化。在频谱的周期重复过程中,其频谱幅度受抽样脉冲序列的傅里叶系数加权,即被NP加权。可以看出,?SF是以S为周期等幅地重复。程序运行结果,如下页图示。很明显,升余弦脉冲信号的频谱抽样后发生了周期延拓,频域上该周期为SST/2???。(二)抽样定理如果TF是带限信号,带宽为M?,则信号TF可以用等间隔的抽样值来唯一表示。经过抽样后的频谱??SF就是将的频谱??F在频率轴上以抽样频率S?为间隔进行周期延拓。因此,当M2?时,周期延拓后频谱?S不会产生频率混叠;当MS?2?时,周期延拓后频谱??S将产生频率混叠。通常把满足抽样定理要求的最低抽样频率2,??MSMSFFF??称为奈奎斯特频率,把最大允许的抽样间隔MSFT21称为奈奎斯特间隔。(三)信号重建抽样定理表明,当抽样定理小于奈奎斯特间隔时,可以使用抽样信号唯一表示原信号,即信号的重建。为了从频谱中无失真的恢复原信号,可以采用截止频率为MC??的理想低通滤波器。上式表明连续信号可展开为抽样函数??TSA的无穷级数,该级数的系数为抽样值。利用MATLAB中的函数TTC?SINSI?来表示??T,所以可获得由??SNTF重建??TF的表达式,即????????????????SCNSSNTTFTF??I实例93对实例91中的升余弦脉冲信号,假设其截止频率为2?M?,抽样间隔1?ST,采用截止频率MC?21的低通滤波器对抽样信号滤波后重建信号TF,并计算重建信号与原升余弦脉冲信号的绝对误差。程序运行结果如下图所示。从图中可以看出,重建后的信号与原升余弦脉冲信号的误差在210以内,因为当选取升余弦脉冲信号带宽为2M??时,实际上已经将很少的高频分量忽略了。程序运行结果如下图所示。结果表明信号不满足抽样定理时,会产生较大的失真,并且绝对误差十分明显。三、实验内容1、设有三个不同频率的正弦信号,频率分别为HZF10?,ZF20?,HZF380?;现在使用抽样频率ZFS40?对这三个信号进行抽样,使用MATLAB命令画出各抽样信号的波形和频谱,并分析其频率混叠现象。2、结合抽样定理,利用MATLAB编程实现TSA信号经过冲激脉冲抽样后得到的抽样信号??TFS及其频谱,并利用??TFS构建信号。四、实验报告要求实验名称、实验目的、实验原理、实验环境、实验内容(上述几部分代码及结果图形)、实验思考等。实验六连续时间LTI系统的频率特性及频域分析一、实验目的1、学会运用MATLAB分析连续系统地频率特性2、学会运用MATLAB进行连续系统的频域分析二、实验原理及实例分析(一)连续时间LTI系统的频率特性一个连续LTI系统的数学模型通常用常系数线性微分方程描述,即0101TXBTTXBTYATTYAMN?????()对上式两边取傅里叶变换,并根据FT的时域微分性质可得????0101???XBJJBYAJJAMN定义?JH为01AJJXJNM??可见为两个J的多项式之比。其中,分母、分子多项式的系数分别为()式左边与右边相应项的系数,?JH称为系统的系统函数,也称为系统的频率响应特性,简称系统频率响应或频率特性。一般J是复函数,可表示为??JEJH?其中,?称为系统的幅频响应特性,简称为幅频响应或幅频特性;??称为系统的相频响应特性,简称相频响应或相频特性。?JH描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。J只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。MATLAB信号处理工具箱提供的FREQS函数可直接计算系统的频率响应的数值解,其语句格式为HFREQSB,A,W其中,B和A表示?JH的分子和分母多项式的系数向量;W为系统频率响应的频率范围,其一般形式为W1PW2,W1为频率起始值,W2为频率终止值,P为频率取值间隔。H返回W所定义的频率点上系统频率响应的样值。注意,H返回的样值可能为包含实部和虚部的复数。因此,如果想得到系统的幅频特性和相频特性,还需要利用ABS和ANGLE函数来分别求得。例1已知某连续LTI系统的微分方程为713580TXTYTYT????????求该系统的频率响应,并用MATLAB绘出其幅频特性和相频特性图。解对上式两端取FT,得????71358023??????JXJJJY因此,频率响应为1723??JJJXH利用MATLAB中的FREQS函数可求出其数值解,并绘出其幅频特性和相频特性图。MATLAB源程序和程序运行结果如下例2下图是实用带通滤波器的一种最简单形式。试求当FCHLR10,,10???时该滤波器的幅频特性和相频特性。解带通滤波器的频率响应为LCRJJXYH/1/2????代入参数,带通滤波器的谐振频率为/10/SRADLC?带通滤波器的幅频特性和相频特性的MATLAB源程序如下程序运行结果如上右图所示,可以看到,该带通滤波器的特性是让接近谐振频率SRAD/10??的信号通过而阻止其它频率的信号。(二)连续时间LTI系统的频率特性连续LTI系统的频域分析法,也称为傅里叶变换分析法。该方法是基于信号频谱分析的概念,讨论信号作用于线性系统时在频域中求解响应的方法。傅里叶分析法的关键是求取系统的频率响应。傅里叶分析法主要用于分析系统的频率响应特性,或分析输出信号的频谱,也可用来求解正弦信号作用下的正弦稳态响应。下面通过实例来研究非周期信号激励下利用频率响应求零状态响应。例3下图A为RC低通滤波器,在输入端加入矩形脉冲如图B所示,利用傅里叶分析法求输出端电压。解RC低通滤波器的频率响应为??JH??,其中51?RC激励信号的FT为?JEXJ/1??因此,响应的FT为25115??????JEJJEHYJJMATLAB源程序和程序运行结果如下所示由上图可看出,时域中输出信号与输入信号的波形产生了失真,表现在波形的上升和下降部分,输出信号的波形上升和下降部分比输入波形要平缓许多。而在频域,激励信号频谱的高频分量与低频分量相比受到较严重的衰减。这正是低通滤波器所起的作用。对于周期信号激励而言,可首先将周期信号进行傅里叶级数展开,然后求系统在各傅里叶级数分解的频率分量作用下系统的稳态响应分量,再由系统的线性性质将这些稳态响应分量叠加,从而得到系统总的响应。该方法的理论基础是基于正弦信号作用下系统的正弦稳态响应。对于正弦激励信号SIN0???TA,当经过系统?H,其稳态响应为SINSI0000?THTTYS????例4设系统的频率响应为2312?J,若外加激励信号为10COS25TT?,用MATLAB命令求其稳态响应。解MATLAB源程序和程序运行结果如下从图形可看出,信号通过该系统后,其高频分量衰减较大,说明该系统是低通滤波器。三、实验内容1、试用MATLAB命令求下图所示电路系统的幅频特性和相频特性。已知FCHLR10,2,0???。2、已知系统微分方程和激励信号如下,试用MATLAB命令求系统的稳态响应。(1)TTFTYT2COS,51????(2)TTF5COS23,32???????四、实验报告要求实验名称、实验目的、实验原理、实验环境、实验内容(上述几部分代码及结果图形)、实验思考等。实验七拉普拉斯变换(LT)一、实验目的1、学会运用MATLAB求拉普拉斯变换(LT)2、学会运用MATLAB求拉普拉斯反变换(ILT)二、实验原理及实例分析LT是分析连续信号与系统的重要方法。运用LT可以将连续LTI系统的时域模型简便地进行变换,经求解在还原为时域解。从数学角度看,LT是求解常系数线性微分方程的工具。由LT导出的系统函数对系统特性分析也具有重要意义。(一)拉普拉斯变换(LT)对于一些不满足绝对可积条件的时域信号,是不存在傅里叶变换的。为了使更多的函数存在变换,并简化某些变换形式或运算过程,引入衰减因子TE??,其中,?为任意实数,使得TEF??满足绝对可积条件,从而求TF??的傅里叶变换,即把频域扩展为复频域。连续时间信号TF的LT定义为?????DTEFSFS()ILT定义为?????JSTDETF??21()式()和()构成了拉普拉斯变换对,SF称为TF的像函数,而TF称为SF的原函数。可以将拉普拉斯变换理解为广义的傅里叶变换。考虑到实际问题,人们用物理手段和实验方法所能记录和处理的一切信号都是有起始时刻的,对于这类单边信号或因果信号,我们引入单边LT,定义为??????0DTEFSFS如果连续信号TF可用符号表达式表示,则可用MATLAB的符号数学工具箱中的LAPLACE函数来实现其单边LT,其语句格式为FLAPCEL?。式中L返回的是默认符号为自变量S的符号表达式,F则为时域符号表达式,可通过SYM函数来定义。例1用MATLAB的LAPLACE函数求SINTUAETFT??的FT。解MATLAB的源程序为FSYM‘EXPTSINAT’LLAPLACEF或SYMSATLLAPLACEEXPTSINATLAPLACE函数另一种语句格式为,VFLAPCEL?。它返回的函数L是关于符号对象V的函数,而不是默认的S。对上例中如果要求FT后的表达式自变量为V,则MATLAB源程序为SYMSATVFEXPTSINATLLAPLACEF,V注请自行验证结果正确与否(二)拉普拉斯反变换(ILT)1、基于MATLAB符号数学工具箱实现ILT如果连续信号TF可用符号表达式表示,则可用MATLAB的符号数学工具箱中的ILAPLACE函数来实现其ILT,其语句格式为LILAPCEF?。式中F返回的是默认符号为自变量T的符号表达式,L则为S域符号表达式,也可通过SYM函数来定义。例2试用MATLAB的ILAPLACE函数求12??SF的ILT。解MATLAB源程序为FSYM‘S2/S21’FTILAPLACEF或SYMSSFTILAPLACES2/S21注请自行验证结果正确与否2、基于MATLAB部分分式展开法实现ILT用MATLAB函数RESIDUE可得到复杂有理式FS的部分分式展开式,其语句格式为,,ABRESIDUKP?其中B、A分别表示FS的分子和分母多项式的系数向量;R为部分分式的系数;P为极点;K为FS中整式部分的系数。若FS为有理真分式,则K为0。例3利用MATLAB部分分式展开法求SSF3423??的ILT。解MATLAB源程序为FORMATRATB1,2A1,4,3,0R,PRESIDUEB,A程序中的FORMATRAT是将结果数据以分数的形式表示,其运行结果为R1/61/22/3P310从上述结果可知,FS有3个单实极点,即0,1,3321???PP,其对应部分分式展开系数为1/6、1/2、2/3。因此,FS可展开为6/12/3/???SSF。所以,FS的反变换为0,3?????????TETFTT例4利用MATLAB部分分式展开法求312???SF的ILT。解FS的分母不是标准的多项式形式,可利用MATLAB的CONV函数将因子相乘的形式转换为多项式的形式,其MATLAB源程序为B1,2ACONVCONV1,0,1,1,CONV1,1,1,1R,PRESIDUEB,A程序运行结果(略)根据程序运行结果,FS可展开为SSSF21321????所以,FS的ILT为522TUETTETFT????(三)拉普拉斯变换法求解微分方程拉普拉斯变换法是分析连续LTI系统的重要手段。LT将时域中的常系数线性微分方程,变换为复频域中的线性代数方程,而且系统的起始条件同时体现在该代数方程中,因而大大简化了微分方程的求解。借助MATLAB符号数学工具箱实现拉普拉斯正反变换的方法可以求解微分方程,即求得系统的完全响应。例5已知某连续LTI系统的微分方程为23TXYTTY????,且已知激励信号42TUETX??,起始条件为40,???Y,求系统的零输入响应、零状态响应和全响应。解对原方程两边进行拉普拉斯变换,并利用起始条件,得20302SXYYSYYSY??????将起始条件及激励变换代入整理可得232312???SXSS其中,第一项为零输入响应的拉普拉斯变换,第二项为零状态响应的拉普拉斯变换。利用MATLAB求其时域解,源程序如下SYMSTSYZIS3S13/S23S2YZIILAPLACEYZISYZI7EXP2T10EXPTXT4EXP2THEAVISIDETXSLAPLACEXTYZSSXS/S23S2YZSILAPLACEYZSSYZS41TEXP2T4EXPTYTSIMPLIFYYZIYZSYT11EXP2T14EXPT4TEXP2T系统的零输入响应为7102TUETYTZI??系统的零状态响应为44TTTTZS系统的完全响应为1122TUETETYTTYTZSZI?????三、实验内容1、试用MATLAB命令求课本习题41各函数的LT。注要求至少任选2个小题。2、试用MATLAB命令求课本习题44各函数的ILT。注要求至少任选2个小题,且分别用两种方法求解。3、试用MATLAB命令和拉普拉斯变换法求课本习题26。注要求至少任选一种情况求解。四、实验报告要求实验八Z变换及离散时间系统的Z域分析一、实验目的1、学会运用MATLAB求离散时间信号的Z变换和Z反变换2、学会运用MATLAB分析离散时间系统的系统函数的零极点3、学会运用MATLAB分析系统函数的零极点分布与其时域特性的关系4、学会运用MATLAB进行离散时间系统的频率特性分析二、实验原理及实例分析(一)Z正反变换序列的双边Z变换定义为序列的单边Z变换定义为MATLAB符号数学工具箱提供了计算离散时间信号的单边Z变换的函数ZTRANS和Z反变换函数IZTRANS,其语句格式分别为ZZTRANSXXIZTRANSZ上式中的X和Z分别为时域表达式和Z域表达式的符号表示,可以通过SYM函数来定义。XSYM‘ANCOSPIN’ZZTRANSXSIMPLIFYZANSZ/ZA2Z变换的MATLAB程序为XSYM‘2N12N1’ZZTRANSXSIMPLIFYZANSZ2/Z2/Z2如果信号的Z域表示式是有理数,则进行Z变换的另外一个办法就是对XZ进行部分分式展开,然后求各简单分式的Z变换。设XZ的有理分式表示为??ZAZBAZABBZXM????????210MATLAB信号工具箱提供了一个对XZ进行部分分式展开的函数RESIDUEZ,其语句格式为R,P,KRESIDUEZB,A其中,B,A分别表示XZ的分子与分母多项式的系数向量,R为部分分式的系数向量,P为极点向量,K为多项式的系数。若XZ为有理真分式,则K为0。(二)系统函数的零极点分析离散时间系统的系统函数定义为??ZXZY?H如果系统函数的有理函数表达式为1121???NNMMAZZABBZ??在MATLAB中系统函数的零极点就可以通过函数ROOTS得到,也可以借助函数TF2ZP得到,TF2ZP的语句格式为Z,P,KTF2ZPB,A其中,B与A分别表示为HZ的分子与分母多项式的系数向量。它的作用是将HZ的有理分式表示为转换为零极点增益形式????NXMPZZPKZ?????12H(三)系统函数的零极点分布与其时域特性的关系在离散系统中,Z变换建立了时域函数HN与Z域函数HZ之间的关系。因此,HZ从形式上可以反映HN的部分内在性质。下面通过讨论HZ的一阶极点情况,来说明系统函数的零极点分布与系统时域特性的关系。从图142可以看出,当极点位于单位圆内时,HN为衰减序列;当极点位于单位圆上时,HN为等幅序列;当极点位于单位圆外时,HN为增幅序列。若HZ有一价实数极点,则HN为指数序列;若HZ为一价共轭极点,则HN为指数震荡序列;则HZ的极点位于虚轴左边,则HZ序列按一正一负的规律交替变化。(四)离散时间LTI系统的频率特性分析对于因果稳定的离散时间系统,如果激励为正弦序列??NUANXSI??,则系统的稳态响应为????UNEHANYJSSI?????。其中,JEH通常为复数。离散时间系统的频率响应定义为????JJE?,其中,J称为离散时间系统的幅频响应特性;称为离散时间系统的相频响应特性;???JEH是以?????????21T,2SS,则若令为周期的周期函数。因此,只要分析J在?范围内的情况,便可知道整个系统在频域的特性。MATLAB提供了求离散时间系统频响特性的函数FREQZ,调用FREQZ的格式主要有两种形式。一种形式为H,WFREQZB,A,N,其中B与A分别表示HZ的分子与分母多项式的系数向量;N为正整数,默认值为512;返回值?包含???,0范围内的N个频率等分点;返回值H则是离散时间系统频率响应???JEH在范围内N的频率处对应的值。另外一种形式为H,WFREQZB,A,N,‘WHOLE’。与第一种方式的不同之处在于角频率的范围由?0扩展到?20。三、实验内容1、使用MATLAB的RESIDUEZ函数,求出1285336416224???ZZZX的部分分式展开和。2、使用MATLAB画出下列因果系统的系统函数的零极点图,并判断系统的稳定性。480961523????ZZH3、使用MATLAB绘制出8132??ZH的频率响应曲线。四、实验报告要求实验名称、实验目的、实验原理、实验环境、实验内容(上述几部分代码及结果)、实验思考等。 关 键 词: 基于 matlab 信号 系统 实验 指导

4d91c43bfc72ca913299809b07b4968f.gif  天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

你可能感兴趣的:(信号的平移和尺度变换matlab,基于matlab的信号与系统实验指导)