数字图像处理简答题(考前速成)

简答题

1、图像的数字化包含哪些步骤?简述这些步骤

图像的数字化主要包含采样、量化两个过程。采样是将空域上连续的图像变换成离散采 样点集合,是对空间的离散化。经过采样之后得到的二维离散信号的最小单位是像素。量化 就是把采样点上表示亮暗信息的连续量离散化后,用数值表示出来,是对亮度大小的离散化 。经过采样和量化后,数字图像可以用整数阵列的形式来描述。

2、图像量化时,如果量化级比较小会出现什么现象?为什么?

如果量化级数过小,会出现伪轮廓现象。量化过程是将连续变化的颜色划分到有限个级 别中,必然会导致颜色信息损失。当量化级别达到一定数量时,人眼感觉不到颜色信息的丢 失。当量化级数过小时,图像灰度分辨率就会降低,颜色层次就会欠丰富,不同的颜色之间 过度就会变得突然,可能会导致伪轮廓现象。

3、简述二值图像

二值图像是指每个像素不是黑,就是白,其灰度值没有中间过渡的图像。这种图像又称 为黑白图像。二值图像的矩阵取值非常简单,每个像素的值要么是 1,要么是 0,具有数据 量小的特点。

4、简述灰度图像

灰度图像是指每个像素的信息由一个量化后的灰度级来描述的数字图像,灰度图像中不 包含彩色信息。标准灰度图像中每个像素的灰度值是 0-255 之间的一个值,灰度级数为 256 级。

5、彩色图像

彩色图像是根据三原色成像原理来实现对自然界中的色彩描述的。红、绿、蓝这三种基 色的的灰度分别用 256 级表示,三基色之间不同的灰度组合可以形成不同的颜色。

6、简述直角坐标系中图像旋转的过程
  1. 计算旋转后行、列坐标的最大值和最小值
  2. 根据最大值和最小值,进行画布扩大,原则是以最小的面积承载全部的图像信息
  3. 计算行、列坐标的平移量
  4. 利用图像旋转公式计算每个像素点旋转后的位置
  5. 对于空穴问题,进行填充
7、如何解决直角坐标系中图像旋转过程中产生的图像空穴问题

对于空穴问题,需要进行填充。可以采用插值的方法来解决填充问题

可以采用邻近行插值,均值插值法和双线性插值

邻近插值法就是将判断为空穴位置上的像素值用其相邻行(或列)的像素值来填充

均值插值法就是将判断为空穴位置上的像素值用其上、下、左、右像素值的均值来填充

8、什么是仿射变换?用矩阵形式如何表示仿射变换?

数字图像处理简答题(考前速成)_第1张图片

9、均值滤波器对高斯噪声的滤波效果,对椒盐噪声的滤波原理?试分析其中的原因

均值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其 周围的邻近像素。将模板中的全体像素的均值来替代原来的像素值的方法。 均值滤波器对高斯噪声的滤波结果较好。

原因:高斯噪声是幅值近似正态分布,但分布在每点像素上。因为正态分布的均值为 0,所 以均值滤波可以消除噪声。

原因:椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。因 为噪声的均值不为 0,所以均值滤波不能很好地去除噪声点。

10、中值滤波器对椒盐噪声的滤波效果,对椒盐噪声的滤波原理?试分析其中的原因

中值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其 周围的邻近像素。取模板中排在中间位置上的像素的灰度值替代待处理像素的值,就可以达 到滤除噪声的目的

原因:椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。使 用中值滤波时,被污染的点一般不处于中值的位置,即选择适当的点来替代污染点的值,所 以处理效果好

11、图像中的细节特征大致有哪些?一般细节反映在图像中的什么地方?

图像的细节是指画面中的灰度变化情况,包含了图像的孤立点、细线、画面突变等。孤 立点大都是图像的噪声点,画面突变一般体现在目标物的边缘灰度部分。

12、一阶微分算子与二阶微分算子在提取图像的细节信息时,有什么异同?

一阶微分算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界 比较清晰;二阶微分算子获得的边界是比较细致的边界。反映的边界信息包括了许多的细节 信息,但是所反映的边界不是太清晰。

13、写出腐蚀运算的处理过程
  1. 扫描原图,找到第一个像素值为 1 的目标点;
  2. 将预先设定好形状以及原点位置的结构元素的原点移到该点;
  3. 判断该结构元素所覆盖的像素值是否全部为 1:
    如果是,则腐蚀后图像中的相同位置上的像素值为 1;
    如果不是,则腐蚀后图像中的相同位置上的像素值为 0;
  4. 重复 2)和 3),直到所有原图中像素处理完成。
14、写出膨胀运算的处理过程
  1. 扫描原图,找到第一个像素值为 1 的目标点;
  2. 将预先设定好形状以及原点位置的结构元素的原点移到该点;
  3. 判断该结构元素所覆盖的像素值是否存在为 1:
    如果是,则膨胀后图像中的相同位置上的像素值为 1;
    如果不是,则膨胀后图像中的相同位置上的像素值为 0;
  4. 重复 2)和 3),直到所有原图中像素处理完成。
15、为什么 YUV 表色系适用于彩色电视的颜色表示?

YUV 表色系适用于彩色电视的颜色表示主要原因有以下 3 点:

(1)YUV 表色系具有亮度 与色度相分离的特点,黑白电视接收彩色电视节目信号时,只需要将 Y、U、V 三路信号中 的 Y 信号介入电视机信号即可;

(2)YUV 表色系具有亮度与色度相分离的特点,彩色电视机 接收黑白电视节目信号时,只要将 U、V 两路信号置为 0 即可。

(3)YUV 表色系与 RGB 表色 系的转换运算比较简单,便于实时进行色系之间的转换。

16、简述白平衡方法的主要原理

白平衡方法的主要原理是:如果原始场景中的某些像素点应该是白色的(R=G=B=255), 但是由于所获取的图像中的相应像素点存在色偏,这些点的 R,G,B 三个分量的值不再保持相 同,通过调整这三个颜色分量的值,使之达到平衡,由此获得对整幅图像的彩色平衡影射关 系,通过该映射关系对整幅图像进行处理,由此达到彩色平衡的目的。

17、什么是图像的无损压缩?给出 2 种无损压缩算法。

哈夫曼编码压缩,行程码压缩

图像的无损压缩是指压缩后的数据进行重构(或称为还原,或称为解压缩),重构后的信息 与原来的信息完全相同的压缩编码方式。无损压缩用于要求重构的信息与原始信息完全一致 的场合

18、DCT 变换编码的主要思想是什么

DCT 变换编码的思想是利用离散余弦变换对数据信息强度的集中特性,可以将数据中视觉上 容易察觉的部分与不容易察觉的部分进行分离,由此可以达到进行有损压缩的目的。

19、什么是一维行程编码?简述其与二维行程编码的主要区别。

一维行程编码是里利用一行上像素的相关性,逐行对图像进行扫描,然后对扫描的结果进行 编码。一维行程编码只考虑了消除行内像素之间的相关性,没有考虑到某种方向之间的相关 性;而二维行程编码是按照一定的扫描路线进行扫描,既可以消除行内像素之间水平方向的 相关性,又可以消除像素垂直方向的相关性

20、压缩编码算法很多,为什么还要采用混合压缩编码?请举例说明

压缩编码算法很多,比如行程编码、霍夫曼编码等。每种不同的压缩编码方法具有各自不同 的特点。比如行程编码擅长对多个重复数据连续出现的情况进行编码;霍夫曼编码则可以有 效地将出现频率高、低不同的数据进行编码。如果将不同的编码方式巧妙的结合在一起,则 可以达到更高的压缩率,这就是混合压缩编码的思想。

21、傅里叶变换在图像处理中有着广泛的应用,举例说明

高通滤波,获得细节部分

低通滤波,获得概貌部分

22、小波变换在图像处理中有着广泛的应用,举例说明

一幅图像经过一次小波变换之后,概貌信息大多集中在低频部分,而其余部分只有微弱 的细节信息。为此,如果只保留占总数据量 1/4 的低频部分,对其余三个部分的系数不存储 或传输,在解压时,这三个子块的系数以 0 来代替,则就可以省略图像部分细节信息,而画 面的效果跟原始图像差别不是很大。这样,就可以得到图像压缩的目的

23、请简述快速傅里叶变换的原理

傅里叶变换是复杂的连加运算,计算时间代价很大。快速傅里叶变换的核心思想是,将 原函数分解成一个奇数项和一个偶数项加权和,然后对所分解的奇数项和偶数项再分别分解 成其中的奇数项和偶数项的加权和。这样,通过不断重复两项的加权和来完成原有傅里叶变 换的复杂运算,达到较少计算时间代价的目的。

你可能感兴趣的:(课程速通,计算机视觉,人工智能,图像处理)