了解:http://www.360doc.com/content/19/1107/16/67231541_871698395.shtml
1、为什么需要置信区间:误差范围(区间)在统计概率中就叫做置信区间;简单来说,置信区间就是误差范围。举例:假设一个同学考了两次才过英语四级,第一次53分,第二次63分。他两次考试的成绩可以不叫作进步,可以称为在某个正确值之间的测量误差范围之内。
2、置信区间和置信水平:在抽样调查中,样本能在多大程度上代表总体?其实这个问题的本质就是想知道数据统计的误差范围是多少,在统计中,其实很难根据一些样本去得到“真正”正确的值(样本得到的只能是估计值,不会是真值),但是可以给出一个区间,一个误差范围。
置信区间:误差范围[a,b]
置信水平 Y%:P(a<均值我们选择这个置信区间,目的是为了为了让“a和b之间包含总体平均值”这一结果具有特定的概率,这个概率就是置信水平
假设我设定的置信水平是95%,也就是说如果我做100次抽样,会有95个置信区间包含了总体平均值。
IoU: IoU 的全称为交并比(Intersection over Union), IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值即
(R∩G)/(R∪G)
计算IoU:包含两个部分
(1)交集的计算:
总之,可以把上述六种情况分为三种情况:相交、内含、不相交,计算方式如下:
#(1)将所有框的得分排序,选中最高分及其对应的框 #(2)遍历其余的框,如果和当前最高分框的重叠面积(IOU)大于一定阈值,我们就将框删除。(为什么要删除,是因为超过设定阈值,认为两个框的里面的物体属于同一个类别,比如都属于狗这个类别。我们只需要留下一个类别的可能性框图即可。) #(3)从未处理的框中继续选一个得分最高的,重复上述过程。 #!/usr/bin/env python # _*_ coding: utf-8 _*_ import cv2 import numpy as np """ Non-max Suppression Algorithm @param list Object candidate bounding boxes @param list Confidence score of bounding boxes @param float IoU threshold @return Rest boxes after nms operation """ def nms(bounding_boxes, confidence_score, threshold): # If no bounding boxes, return empty list if len(bounding_boxes) == 0: return [], [] # Bounding boxes boxes = np.array(bounding_boxes) # coordinates of bounding boxes start_x = boxes[:, 0] start_y = boxes[:, 1] end_x = boxes[:, 2] end_y = boxes[:, 3] # Confidence scores of bounding boxes score = np.array(confidence_score) # Picked bounding boxes picked_boxes = [] picked_score = [] # Compute areas of bounding boxes areas = (end_x - start_x + 1) * (end_y - start_y + 1) # Sort by confidence score of bounding boxes order = np.argsort(score) # Iterate bounding boxes while order.size > 0: # The index of largest confidence score index = order[-1] # Pick the bounding box with largest confidence score picked_boxes.append(bounding_boxes[index]) picked_score.append(confidence_score[index]) # Compute ordinates of intersection-over-union(IOU) x1 = np.maximum(start_x[index], start_x[order[:-1]]) x2 = np.minimum(end_x[index], end_x[order[:-1]]) y1 = np.maximum(start_y[index], start_y[order[:-1]]) y2 = np.minimum(end_y[index], end_y[order[:-1]]) # Compute areas of intersection-over-union w = np.maximum(0.0, x2 - x1 + 1) h = np.maximum(0.0, y2 - y1 + 1) intersection = w * h # Compute the ratio between intersection and union ratio = intersection / (areas[index] + areas[order[:-1]] - intersection) left = np.where(ratio < threshold) order = order[left] return picked_boxes, picked_score # Image name image_name = 'A.jpg' # Bounding boxes bounding_boxes = [(187, 82, 337, 317), (150, 67, 305, 282), (246, 121, 368, 304)] confidence_score = [0.9, 0.75, 0.8] # Read image image = cv2.imread(image_name) # Copy image as original org = image.copy() # Draw parameters font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 1 thickness = 2 # IoU threshold threshold = 0.4 # Draw bounding boxes and confidence score for (start_x, start_y, end_x, end_y), confidence in zip(bounding_boxes, confidence_score): (w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness) cv2.rectangle(org, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1) cv2.rectangle(org, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2) cv2.putText(org, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness) # Run non-max suppression algorithm picked_boxes, picked_score = nms(bounding_boxes, confidence_score, threshold) # Draw bounding boxes and confidence score after non-maximum supression for (start_x, start_y, end_x, end_y), confidence in zip(picked_boxes, picked_score): (w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness) cv2.rectangle(image, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1) cv2.rectangle(image, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2) cv2.putText(image, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness) # Show image cv2.imshow('Original', org) cv2.imshow('NMS', image) cv2.waitKey(0)