CNN(卷积神经网络)

一个基于MNIST数据集的简单卷积神经网络案例

import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from  torchvision import datasets,transforms
import numpy as np
import matplotlib.pyplot as plt


input_size = 28
num_classes = 10 #有多少类
num_epochs = 3  #循环训练数据多少次
batch_size = 64 #一次训练多少张图片

#    训练集
train_dataset = datasets.MNIST(root="./data",train=True,transform =transforms.ToTensor(),
                            download=True)
#   测试集
test_dataset = datasets.MNIST(root="./data",train=False,transform =transforms.ToTensor(),
                              download=True)
#   构建batch数据
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=True)


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()     # 输入大小(1,28,28)
        self.conv1 = nn.Sequential(
             #    H =(h - kernel + 2padding)/stride +1
             #    W =(w - kernel + 2padding)/stride +1
             #  要使卷积后大小不变,if stride =1,那么   padding =(kernel-1)/2
            nn.Conv2d(in_channels=1,out_channels=16,kernel_size=5,stride=1,padding=2),  #(16,28,28)
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)   #    (16,14,14)

        )
        self.conv2 =nn.Sequential(
            nn.Conv2d(16,32,5,1,2),     # (32,14,14)
            nn.ReLU(),
            nn.MaxPool2d(2)       #   (32,7,7)

        )
        self.out = nn.Linear(32*7*7,10)   # 全连接层

    def forward(self,x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0),-1)    # flatten操作,结果为(batch_size,32*7*7),可以替换为 x =torch.flatten(x)
        output = self.out(x)
        return output     # 全连接层得到的结果

def accuracy(predicitions , labels):
    pred = torch.max(predicitions.data,1)[1]  #返回两个列表,第一个列表为最大值,第二个为标签,纵向比较最大值
    ''' 类似 .argmax(1) '''
    '''
      >>> a = torch.randn(4, 4)
        >>> a
        tensor([[-1.2360, -0.2942, -0.1222,  0.8475],
                [ 1.1949, -1.1127, -2.2379, -0.6702],
                [ 1.5717, -0.9207,  0.1297, -1.8768],
                [-0.6172,  1.0036, -0.6060, -0.2432]])
        >>> torch.max(a, 1)
        torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1]))
    
    '''
    rights = pred.eq(labels.data.view_as(pred)).sum()
    return rights,len(labels)    # 返回正确的个数,总数量


# 实例化
net = CNN()
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = optim.Adam(net.parameters(),lr=0.001)  # 定义优化器,普通的随机梯度下降算法

# 开始训练循环
for epoch in range(num_epochs):
    # 将当前epoch的结果保存下来
    train_rights = []
    for batch_idx , (data,target) in enumerate(train_loader): #针对容器中的每一个批进行循环
        net.train()
        output = net(data)
        loss = criterion(output,target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        right = accuracy(output,target)
        train_rights.append(right)


        if batch_idx % 100 ==0:
            net.eval()
            val_rights = []
            for (data,target) in test_loader:
                output = net(data)
                right = accuracy(output,target)
                val_rights.append(right)

            #准确率计算
            train_r = (sum([tup[0] for tup in train_rights]),sum([tup[1] for tup in train_rights]))
            val_r = (sum([tup[0] for tup in val_rights]),sum([tup[1] for tup in val_rights]))

            print('当前epoch:{}[{}/{} ({:.0f}%)]\t损失:{:.6f}\t训练集准确率:{:.2f}%\t测试集正确率:{:.2f}%'.format(
                epoch,
                batch_idx * batch_size ,
                len(train_dataset),
                100. * batch_idx / len(train_loader),
                loss.data,
                100. * train_r[0].numpy() /train_r[1],
                100. * val_r[0].numpy() / val_r[1]
            ))

你可能感兴趣的:(人工智能)