【Matlab】复化梯形公式求积分、求二重积分

目录

  • 一、复化梯形公式求积分
    • 1.1 题目
    • 1.2 程序
    • 1.3 运行结果
  • 二、复化梯形公式求二重积分
    • 2.1 题目
    • 2.2 程序
      • 2.2.1 二重积分通用程序
      • 2.2.2 主函数程序
    • 2.3 运行结果

一、复化梯形公式求积分

1.1 题目

利用复化梯形公式计算
I ( f ) = ∫ 1 5 s i n x x d x I(f) = \int_1^5{\frac{sinx}{x}dx} I(f)=15xsinxdx
的近似值,精确至7位有效数字。

1.2 程序

clc; clear all
syms x 

%% 已知条件
Fx(x) = sin(x)/x;
a = 1;
b = 5;
epsilon = 5e-8;
e = 1;
T = []; % 存放Tf的值
h = b-a;
Xk1 = [a, b];  % 存放已选的 xk
Xk2 = [];      % 存放将要使用的 x(k+1/2)
sumfx = 0;     % sum( fx(k+1/2) )

%% 计算
digits(8)
format long
k = 0;
Tf = vpa( b - a ) / 2 * ( Fx(a) + Fx(b) );
T = [T, Tf];
fprintf('k=%d, 2^k=%d, Tk=%0.8f\n',k,2^k,Tf) 

while(e>epsilon)
    for i=1:length(Xk1)-1
        temp = ( Xk1(i) + Xk1(i+1) ) / 2;
        sumfx = sumfx + Fx(temp);
        Xk2 = [Xk2,temp];
    end
    Xk1 = [Xk1,Xk2];
    Xk1 = sort(Xk1);
    
    k = k + 1;
    Tf = vpa( 0.5 * ( Tf + h * sumfx ) );
    T = [T, Tf];
    e = abs(Tf - T(end-1))/3;
    fprintf('k=%d, 2^k=%d, Tk=%0.8f, e=%0.8f\n',k,2^k,Tf,e) 
    
    % 更新值
    h = h / 2;
    sumfx = 0;
    Xk2 = [];
end

If = Tf;
fprintf('复化梯形求积公式的结果为:%0.8f\n',If)

1.3 运行结果

【Matlab】复化梯形公式求积分、求二重积分_第1张图片

二、复化梯形公式求二重积分

2.1 题目

(1)给定积分 I ( f ) = ∫ c d ( ∫ a b f ( x , y ) d x ) d y I(f)=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) \mathrm{d} x\right) \mathrm{d} y I(f)=cd(abf(x,y)dx)dy,取初始步长 h h h k k k及精度 ε \varepsilon ε,应用复化梯形公式,采用逐次二分步长的方法并应用外推思想编制计算 I ( f ) I(f) I(f)的通用程序,计算至相邻两次近视值之差的绝对值不超过 ε \varepsilon ε为止;

(2)用所编程序计算积分 I ( f ) = ∫ 0 π / 6 ( ∫ 0 π / 3 tan ⁡ ( x 2 + y 2 ) d x ) d y I(f)=\int_{0}^{\pi / 6}\left(\int_{0}^{\pi / 3} \tan \left(x^{2}+y^{2}\right) \mathrm{d} x\right) \mathrm{d} y I(f)=0π/6(0π/3tan(x2+y2)dx)dy
ε = 1 2 × 1 0 − 5 \varepsilon=\frac{1}{2} \times 10^{-5} ε=21×105

2.2 程序

2.2.1 二重积分通用程序

function[result] = trapezoid(a,b,c,d,F,epsilon)
    %% 初值条件
    T0 = [];  % 存放Tm,n(f)
    T1 = [];  % 存放T(1)m,n(f)
    T2 = [];  % 存放T(2)m,n(f)
    T3 = [];  % 存放T(3)m,n(f)

    m = 1;  % 将[a,b] m等分
    n = 1;  % 将[c,d] n等分; 注:虽然这里m与n相等,但分开计算。
    h = (b - a) / m;  % x的步长
    k = (d - c) / n;  % y的步长
    xx = [a,b];
    yy = [c,d];
    e = 1; % 误差

    %% 计数位
    count = 0;
    T0_count = 0;
    T1_count = 0;
    T2_count = 0;
    T3_count = 0;

    %% 计算
    digits(10)
    T =  h * k  / 4 * ( F(xx(1),yy(1)) + F(xx(1),yy(2)) + F(xx(2),yy(1)) + F(xx(2),yy(2)) )   ;
    T0 = [T0, T];
    T0_count = T0_count + 1;
    count = 1;
    fprintf('k=%d, 2^k=%d, T0=%0.8f\n',count,2^count,T) 

    while(e>epsilon)
        m = 2 * m;
        n = 2 * n;
        h = (b - a) / m;
        k = (d - c) / n;

        % 计算x、y的取值
        xx = [a];  % 暂时只存入左边值
        yy = [c];  % 暂时只存入左边值
        for i = 1:m
            temp = a + i * h;
            xx = [xx,temp];
        end
        for j = 1:n
            temp = c + j * k;
            yy = [yy,temp];
        end

        % 计算T0
        T = 0;
        for i = 1:m
            for j = 1:n
                T = T + vpa( h * k /4 * (F(xx(i),yy(j)) + F(xx(i),yy(j+1)) + F(xx(i+1),yy(j)) + F(xx(i+1),yy(j+1)) ) );
            end
        end
        T0 = [T0,T];
        T0_count = T0_count + 1;
        count = count + 1;
        fprintf('k=%d, 2^k=%d, T0=%0.8f',count,2^count,T) 

        % 计算T1
        if T0_count - T1_count == 2 && T0_count >= 2
            temp = 4 / 3 * T0(end) - 1 / 3 * T0(end-1);
            T1 = [T1,temp];
            T1_count = T1_count + 1;
            fprintf(', T1=%0.8f',T1(end)) 
        end

        % 计算T2
        if T1_count - T2_count == 2  && T1_count >= 2
            temp = 4 / 3 * T1(end) - 1 / 3 * T1(end-1);
            T2 = [T2,temp];
            T2_count = T2_count + 1;
            fprintf(', T2=%0.8f',T2(end)) 
        end

        % 计算T3
        if T2_count - T3_count == 2  && T2_count >= 2
            temp = 4 / 3 * T2(end) - 1 / 3 * T2(end-1);
            T3 = [T3,temp];
            T3_count = T3_count + 1;
            fprintf(', T3=%0.8f',T3(end)) 
        end

        if T3_count >= 2
            e = T3(end) - T3(end-1);
            fprintf(', e=%0.8f',e) 
        end
        fprintf('\n') 
    end
    fprintf('复化梯形二重积分求积公式的结果为:%0.8f\n',T3(end))
    result = T3(end);
end

2.2.2 主函数程序

clc; clear;

syms x y
F(x,y) = tan(x^2 + y^2);
a = 0;
b = pi/3;
c = 0;
d = pi/6;
epsilon = 0.5e-5;

result = trapezoid(a,b,c,d,F,epsilon);

2.3 运行结果

【Matlab】复化梯形公式求积分、求二重积分_第2张图片

你可能感兴趣的:(算法,Matlab,matlab,算法)