机器学习100天: Day3 多元线性回归

本文介绍多元线性回归算法及其代码实现

机器学习100天: Day3 多元线性回归_第1张图片

 

第1步: 数据预处理

导入库

import pandas as pd
import numpy as np

导入数据集

dataset = pd.read_csv('50_Startups.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : ,  4 ].values

将类别数据数字化

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[: , 3] = labelencoder.fit_transform(X[ : , 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()

躲避虚拟变量陷阱

X = X[: , 1:]

拆分数据集为训练集和测试集

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)

第2步: 在训练集上训练多元线性回归模型

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, Y_train)

第3步: 在测试集上预测结果

y_pred = regressor.predict(X_test)

 

你可能感兴趣的:(机器学习100天)