GNN Algorithms(2): GCN, Graph Convolutional Network

目录

GCN Algorithm

Background

传统卷积公式:在graph上不行

定义Graph Fourier

传统Fourier transformation

传统Inverse Fourier transformation

拉普拉斯算子laplacian operator

Graph Fourier

Inverse Graph Fourier

Graph Convolution

图卷积核Graph Convolution kernel

GCN codes

GCN implementation - 1

GCN implementation - 2

参考


GCN Algorithm

Essence: 传统的卷积运算无法在graph上进行运算,所有借由傅里叶变换Fourier Transformation实现在graph上的卷积运算,得到graph convolution,退出GCN(graph convolutional network)。

Background

graph embedding:将图的拓扑结构进行向量表示的方法。

GNN可以直接通过对图的拓扑结构顶点的属性信息进行学习来得到任务的结果。

GNN是谱图卷积的一阶近似,是一个多层的图卷积神经网络,每一个卷积层仅处理一阶邻域信息,通过叠加若干卷积层可以实现多阶邻域的信息传递。

传统卷积公式:在graph上不行

传统卷积公式:

(f * g)(t) = \int _{R}f(x)g(t-x)dx

g为作用在f上的filter或卷积核kernel,又称滤波器,比如

GNN Algorithms(2): GCN, Graph Convolutional Network_第1张图片

problem:在图像里面卷积的概念很直接,因为像素点的排列顺序有明确的上下左右位置关系 -> graph节点没有空间上的位置关系那么graph里面的卷积核该怎么做呢?

solution:傅里叶变换fourier transformation,因为根据卷积定理,卷积公式可以写成:

f*g=F^{-1}\{F\{f\}\cdot F\{g\}\}

 -> 这样,我们只需定义graph上的fourier变换,就可以定义出graph上的convolution卷积操作。

定义Graph Fourier

传统Fourier transformation

频域向时域变化 

F\{f\}(v)=\int_{R}f(x)e^{-2\pi ix\cdot v}dx

传统Inverse Fourier transformation

时域向频域变化

F^{-1}\{f\}(x)=\int_{R}f(v)e^{2\pi ix\cdot v}dv

拉普拉斯算子laplacian operator

拉普拉斯算子是二阶导数 -> graph上的拉普拉斯算子 L = D-A,D是度矩阵(degree matrix),是一个对角矩阵;A是邻接矩阵(adjacency matrix)

-> 标准化后 L=I_{N} - D^{-1/2}AD^{-1/2}

-> laplacian matrix的特征向量U作为图傅里叶变换的基 L=U\Lambda U^{T}

Graph Fourier

g F\{x\} = U^{T}x

Inverse Graph Fourier

IgF\{x\} = Ux

Graph Convolution

f*g=F^{-1}\{F\{f\}\cdot F\{g\}\} => g*x = U(U^{T}g\cdot T^{T}x)

逆变换,变换,向量 => 卷积核filter, 特征向量U,输入向量x

图卷积核Graph Convolution kernel

传统卷积核filter只影响到一个像素附近的像素

-> graph卷积核filter函数g,为了让其具有很好的局部性,将g定义成了一个拉普拉斯矩阵函数g(L)

->作用一次laplacian矩阵相当于在传播了一次邻居节点,进一步U^{T}g可以看作是g_{\theta}(\Lambda )一个laplacian特征值的函数,参数为θ。

-> 

g_{\theta}*x = Ug_{\theta}U^{T}x = Ug_{\theta'}(\Lambda )U^{T}x

-> 对filter函数做切比雪夫近似chebshev(以多项式之和最佳线性逼近一个函数),目标是省去特征向量求解

GNN Algorithms(2): GCN, Graph Convolutional Network_第2张图片

令K=1,得到

g_{\theta'}*x \approx \theta(I_{N} + L)x \\ = \theta(\tilde{D}^{-1/2}A\tilde{D}^{-1/2})x

此时x是输入向量,不是chebyshev中的多项式,别搞混了!

GCN codes

GCN implementation - 1

参考:Github address: https://github.com/dsgiitr/graph_nets/blob/master/GCN/GCN.py

# -*- coding: utf-8 -*-
# @Time : 2022/8/16 11:30
# @Author : yysgz
# @File : GCN.py
# @Project : GNN Algorithms
# @Description : 2022.08.16,实现GCN algorithm

import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt

import os
project_path = os.getcwd()
os.environ["KMP_DUPLICATE_LIB_OK"]  =  "TRUE"

import imageio
from celluloid import Camera
from IPython.display import HTML # 如果要在jupyter中显示,需要加入HTML
plt.rcParams['animation.ffmpeg_path'] = r'D:/Anaconda3/Lib/site-packages/ffmpeg-5.1-essentials_build/bin/ffmpeg.exe'

# 搭建graph convolution layer
class GCNConv(nn.Module):
    def __init__(self, A, in_channels, out_channels):
        super(GCNConv,self).__init__()
        self.A_hat = A + torch.eye(A.size(0))  # 构造A_hat邻接矩阵
        self.D     = torch.diag(torch.sum(self.A_hat,1)) # torch.sum(A,dim=1)纵向求和;torch.diag构建度矩阵
        self.D_hat = self.D.inverse().sqrt() # inverse获取方阵的逆;sqrt()获取tensor的平方根
        self.A_hat = torch.mm(torch.mm(self.D_hat,self.A_hat),self.D_hat)
        self.W     = nn.Parameter(torch.rand(in_channels, out_channels), requires_grad=True) # 初始化参数矩阵。
                                            # rand(size)随机抽取[0,1)之间的数据组成size的tensor;nn.Parameter将不可训练tensor变成可训练tensor
    # 定义forward函数
    def forward(self, X):
        out = torch.relu(torch.mm(torch.mm(self.A_hat,X),self.W))
        return out
    
    
class Net(torch.nn.Module):
    def __init__(self,A,nfeat,nhid,nout):
        super(Net,self).__init__()
        self.conv1 = GCNConv(A,nfeat,nhid)
        self.conv2 = GCNConv(A,nhid,nout)
    
    def forward(self, X):
        H1 = self.conv1(X)
        H2 = self.conv2(H1)
        return H2
    
# 'A' is the adjacency matrix, it contains 1 at a position (i,j)
A=torch.Tensor([[0,1,1,1,1,1,1,1,1,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0],
                [1,0,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0],
                [1,1,0,1,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0],
                [1,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1],
                [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
                [1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
                [0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
                [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
                [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,1,1],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1],
                [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1],
                [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1],
                [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,1],
                [0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
                [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,1,1],
                [0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,0,1],
                [0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,0]
                ])
# label for admin(node 1) and instructor(node 34) so only these two contain the class label(0 and 1)
# all other are set to -1, meaning predicted value of these nodes is ignored in the loss function.
target=torch.tensor([0,-1,-1,-1, -1, -1, -1, -1,-1,-1,-1,-1, -1, -1, -1, -1,-1,-1,-1,-1, -1, -1, -1, -1,-1,-1,-1,-1, -1, -1, -1, -1,-1,1])
X=torch.eye(A.size(0))


# Network with 10 features in the hidden layer and 2 in output layer.
T=Net(A,X.size(0), 10, 2)

criterion = torch.nn.CrossEntropyLoss(ignore_index=-1) # 定义损失函数评价指标
optimizer = optim.SGD(T.parameters(), lr=0.01, momentum=0.9)  # 更新权重w针对的是整个神经网络Net,而不是单层卷积Conv

# plot animation with celluloid
fig = plt.figure()
camera = Camera(fig)

for i in range(200):  # 迭代200次
    optimizer.zero_grad()  # 重置梯度为0。梯度就是导数,就是误差error
    loss=criterion(T(X), target) # 计算loss函数
    loss.backward()  # BP反向传播,计算梯度误差。
    optimizer.step()  # 更新权重,即权重参数w
    l = (T(X));

    plt.scatter(l.detach().numpy()[:,0],l.detach().numpy()[:,1],c=[0, 0, 0, 0 ,0 ,0 ,0, 0, 1, 1, 0 ,0, 0, 0, 1 ,1 ,0 ,0 ,1, 0, 1, 0 ,1 ,1, 1, 1, 1 ,1 ,1, 1, 1, 1, 1, 1 ])
    for i in range(l.shape[0]):
        text_plot = plt.text(l[i,0], l[i,1], str(i+1))
    camera.snap()

    if i%20==0:
        print("Cross Entropy Loss: =", loss.item())

animation = camera.animate(blit=False, interval=150)
animation.save('./train_karate_animation.mp4', writer='ffmpeg', fps=60)
HTML(animation.to_html5_video())

GCN implementation - 2

# -*- coding: utf-8 -*-
# @Time : 2022/8/16 11:30
# @Author : yysgz
# @File : GCN.py
# @Project : GNN Algorithms
# @Description : 2022.08.16,实现GCN-2,参考github links:https://github.com/dragen1860/GCN-PyTorch

'------------------------------config------------------------------------'
import argparse

args = argparse.ArgumentParser() # 创建一个参数解析对象
# 然后向该对象中添加你想要的参数和对象
args.add_argument('--dataset', default='cora')
args.add_argument('--model', default='gcn')
args.add_argument('--learning_rate', type=float, default=0.01)
args.add_argument('--epochs', type=int, default=200)
args.add_argument('--hidden', type=int, default=16)
args.add_argument('--dropout', type=float, default=0.5)
args.add_argument('--weight_decay', type=float, default=5e-4)
args.add_argument('--early_stopping', type=int, default=10)
args.add_argument('--max_degree', type=int, default=3)

# 最后调用parse_args()方法进行解析,解析成功后即可进行调用
args = args.parse_args(args=[])
print(args)

'-----------------------------utils--------------------------------------'
import torch
from torch.nn import functional as F

def masked_loss(out, label, mask):
    loss = F.cross_entropy(out,label, reduction='none')
    mask = mask.float() # 将整数和字符串转换成浮点型
    mask = mask/mask.mean()
    loss *= mask
    loss = loss.mean()
    return loss

def masked_acc(out, label, mask):
    # [node, f]
    pred = out.argmax(dim=1) # argmax返回最大值的索引
    correct = torch.eq(pred, label).float()
    mask = mask.float()
    mask = mask.mean()
    correct *= mask
    acc = correct.mean()
    return acc

def sparse_dropout(x, rate, noise_shape):
    '''
    :param x:
    :param rate:
    :param noise_shape: int_scalar
    :return
    '''
    random_tensor = 1 - rate
    random_tensor += torch.rand(noise_shape).to(x.device)
    dropout_mask = torch.floor(random_tensor).byte()  # 取整函数floor;byte数据类型
    i = x._indices()  # [2,49216],按索引index获取切片
    v = x._values()  # [49216]

    # [2,49216] => [49216,2] => [remained node,2] => [2, remained node]
    i = i[:, dropout_mask]
    v = v[dropout_mask]

    out = torch.sparse.FloatTensor(i, v, x.shape).to(x.device)
    out = out * (1. / (1 - rate))

    return out

# sparse tensor
i = torch.LongTensor([[0, 1, 1],
                     [2, 1, 0]])
d = torch.tensor([3, 6, 9], dtype=torch.float)
a = torch.sparse.FloatTensor(i, d, torch.Size([2, 3]))
print(a)

def dot(x, y, sparse=False):
    if sparse:
        res = torch.sparse.mm(x,y)
    else:
        res = torch.mm(x,y)
    return res

'-------------data---------------------------------------'
import pandas as pd
import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
from scipy.sparse.linalg.eigen.arpack import eigsh
import sys

def parse_index_file(filename):
    '''
    parse index file
    '''
    index = []
    for line in open(filename):
        index.append(int(line.strip()))
    return index

def sample_mask(idx, l):
    '''
    create mask
    '''
    mask = np.zeros(l)
    mask[idx] = 1
    return np.array(mask, dtype=np.bool)


def load_data(dataset_str):
    '''
    Loads input data from gcn/data directory
    ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object;
    ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object;
    ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances
        (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object;
    ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object;
    ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object;
    ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
    ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict
        object;
    ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object.
    All objects above must be saved using python pickle module.
    :param dataset_str: Dataset name
    :return: All data input files loaded (as well the training/test data).
    '''
    names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
    objects = []
    for i in range(len(names)):
        with open('data/ind.{}.{}'.format(dataset_str, names[i]), 'rb') as f:
            if sys.version_info > (3, 0):
                objects.append(pkl.load(f, encoding='latin1'))
            else:
                objects.append(pkl.load(f))

    x, y, tx, ty, allx, ally, graph = tuple(objects)
    test_idx_recorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
    test_idx_range = np.sort(test_idx_recorder)

    if dataset_str == 'citeseer':
        # fix citeseer dataset (there are some isolated nodes in the graph)
        # find isolated nodes, add them as zero-vecs into the right position
        test_idx_range_full = range(min(test_idx_recorder), max(test_idx_recorder) - 1)
        tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
        tx_extended[test_idx_range - min(test_idx_range), :] = tx
        tx = tx_extended
        ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
        ty_extended[test_idx_range - min(test_idx_range), :] = ty
        ty = ty_extended
    features = sp.vstack((allx, tx)).tolil()
    features[test_idx_recorder, :] = features[test_idx_range, :]
    adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))

    labels = np.vstack((ally, ty))  # vstack按行拼接
    labels[test_idx_recorder, :] = labels[test_idx_range, :]

    idx_test = test_idx_range.tolist()
    idx_train = range(len(y))
    idx_val = range(len(y), len(y) + 500)

    train_mask = sample_mask(idx_train, labels.shape[0])  # 训练集
    val_mask = sample_mask(idx_val, labels.shape[0])  # 验证集
    test_mask = sample_mask(idx_test, labels.shape[0])  # 测试集

    y_train = np.zeros(labels.shape)
    y_val = np.zeros(labels.shape)
    y_test = np.zeros(labels.shape)
    y_train[train_mask, :] = labels[train_mask, :]
    y_val[val_mask, :] = labels[val_mask, :]
    y_test[test_mask, :] = labels[test_mask, :]

    return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask


def sparse_to_tuple(sparse_mx):
    '''
    convert sparse matrix to tuple representation.
    '''

    def to_tuple(mx):
        if not sp.isspmatrix_coo(mx):
            mx = mx.tocoo()
        coords = np.vstack((mx.row, mx.col)).transpose()
        values = mx.data
        shape = mx.shape
        return coords, values, shape

    if isinstance(sparse_mx, list):
        for i in range(len(sparse_mx)):
            sparse_mx[i] = to_tuple(sparse_mx[i])
    else:
        sparse_mx = to_tuple(sparse_mx)
    return sparse_mx

def preprocess_features(features):
    """
    Row-normalize feature matrix and convert to tuple representation
    """
    print(features.shape)
    print(features)
    rowsum = np.array(features.sum(1)) # get sum of each row, [2708, 1]
    r_inv = np.power(rowsum, -1).flatten() # 1/rowsum, [2708]
    r_inv[np.isinf(r_inv)] = 0. # zero inf data
    r_mat_inv = sp.diags(r_inv) # sparse diagonal matrix, [2708, 2708]
    features = r_mat_inv.dot(features) # D^-1:[2708, 2708]@X:[2708, 2708]
    return sparse_to_tuple(features) # [coordinates, data, shape], []

def normalize_adj(adj):
    'symmetrically normalize adjacency matrix'
    adj = sp.coo_matrix(adj)
    rowsum = np.array(adj.sum(1))
    d_inv_sqrt = np.power(rowsum, -0.5).flatten()
    d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0
    d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
    return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()

def preprocess_adj(adj):
    'preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.'
    adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0]))
    return sparse_to_tuple(adj_normalized)


# 切比雪夫多项式之和最佳线性逼近任意一个函数
def chebyshev_polynomials(adj, k):
    '''
    calculate chebyshev polynomials up to order k.
    return a list of sparse matrices(tuple representation)
    '''
    adj_normalized = normalize_adj(adj)
    laplacian = sp.eye(adj.shape[0]) - adj_normalized
    largest_eigval, _ = eigsh(laplacian, 1, which='LM')
    scaled_laplacian = (2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0])

    t_k = list()
    t_k.append(sp.eye(adj.shape[0]))
    t_k.append(scaled_laplacian)

    def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap):
        s_lap = sp.csr_matrix(scaled_lap, copy=True)
        return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two

    for i in range(2, k + 1):
        t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian))

    return sparse_to_tuple(t_k)

'-------------------------graph convolution layer--------------'
import torch
from torch import nn
from torch.nn import functional as F


# 构建图卷积层
class GraphConvolution(nn.Module):
    def __init__(self, input_dim, output_dim, num_features_nonzero,
                 dropout=0,
                 is_sparse_inputs=False,
                 bias=False,
                 activation=F.relu,
                 featureless=False):
        super(GraphConvolution, self).__init__()

        self.dropout = dropout
        self.bias = bias
        self.activation = activation
        self.is_sparse_inputs = is_sparse_inputs
        self.featureless = featureless
        self.num_features_nonzero = num_features_nonzero

        self.weight = nn.Parameter(torch.randn(input_dim, output_dim))
        self.bias = None
        if bias:
            self.bias = nn.Parameter(torch.zeros(output_dim))

    # 构造前馈网络
    def forward(self, inputs):
        # prints('inputs': inputs)
        x, support = inputs
        if self.training and self.is_sparse_inputs:
            x = sparse_dropout(x, self.dropout, self.num_features_nonzero)
        elif self.training:
            x = F.dropout(x, self.dropout)

        # convolve
        if not self.featureless:
            if self.is_sparse_inputs:
                xw = torch.sparse.mm(x, self.weight)
            else:
                xw = torch.mm(x, self.weight)
        else:
            xw = self.weight

        out = torch.sparse.mm(support, xw)
        if self.bias is not None:
            out += self.bias

        return self.activation(out), support

'--------------------------GCN model--------------'
import torch
from torch import nn
from torch.nn import functional as F


# 搭建GCN网络模型
class GCN(nn.Module):
    def __init__(self, input_dim, output_dim, num_features_nonzero):
        super(GCN, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim

        print('input dim:', input_dim)
        print('output dim:', output_dim)
        print('num_features_nonzero:', num_features_nonzero)

        self.layers = nn.Sequential(GraphConvolution(self.input_dim, args.hidden, num_features_nonzero,
                                                     activation=F.relu, dropout=args.dropout,
                                                     is_sparse_inputs=True),
                                    GraphConvolution(args.hidden, output_dim, num_features_nonzero,
                                                     activation=F.relu, dropout=args.dropout,
                                                     is_sparse_inputs=False))

    def forward(self, inputs):
        x, support = inputs
        x = self.layers((x, support))
        return x

    def l2_loss(self):
        layer = self.layers.children()
        layer = next(iter(layer))

        loss = None
        for p in layer.parameters():
            if loss is None:
                loss = p.pow(2).sum()
            else:
                loss += p.pow(2).sum()

        return loss

'----------------------------train-------------------'
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F

import numpy as np

seed = 123
np.random.seed(seed)
torch.random.manual_seed(seed)

adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data(args.dataset)
print('adj:', adj.shape)
print('faetures:', features.shape)
print('y:', y_train.shape, y_val.shape, y_test.shape)
print('mask:', train_mask.shape, val_mask.shape, test_mask.shape)

features = preprocess_features(features)
supports = preprocess_adj(adj)

device = torch.device('cuda')
train_label = torch.from_numpy(y_train).long()
num_classes = train_label.shape[1]
train_label = train_label.argmax(dim=1)
train_mask = torch.from_numpy(train_mask.astype(np.int))

val_label = torch.from_numpy(y_val).long()
val_label = val_label.argmax(dim=1)
val_mask = torch.from_numpy(val_mask.astype(np.int))

test_label = torch.from_numpy(y_test).long()
test_label = test_label.argmax(dim=1)
test_mask = torch.from_numpy(test_mask.astype(np.int))

i = torch.from_numpy(features[0]).long().to(device)
v = torch.from_numpy(features[1]).to(device)
feature = torch.sparse.FloatTensor(i.t(), v, features[2]).to(device)

i = torch.from_numpy(features[0]).long().to(device)
v = torch.from_numpy(features[1]).to(device)
support = torch.sparse.FloatTensor(i.t(), v, supports[2]).float().to(device)

print('x:', feature)
print('sp:', support)
num_features_nonzero = feature._nnz()
feat_dim = feature.shape[1]

# training
net = GCN(feat_dim, num_classes, num_features_nonzero)
# net.to(device)
optimizer = optim.Adam(net.parameters(), lr=args.learning_rate)

net.train()
for epoch in range(args.epochs):
    out = net((feature, support))
    out = out[0]
    loss = masked_loss(out, train_label, train_mask)
    loss += args.weight_decay * net.l2_loss()

    acc = masked_acc(out, train_label, train_mask)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if epoch % 10 == 0:
        print(epoch, loss.item(), acc.item())
# test
net.eval()
out = net((feature, support))
out = out[0]
acc = masked_acc(out, test_label, test_mask)
print('test:', acc.item())

参考

特征分解_百度百科 

拉普拉斯矩阵与拉普拉斯算子的关系 - 知乎

拉普拉斯矩阵(Laplacian matrix)及其变体详解_qq280929090的博客-CSDN博客_拉普拉斯矩阵

傅里叶级数与傅里叶变换(一) | Dwzb's Blog

谱聚类方法推导和对拉普拉斯矩阵的理解 - 知乎

Graph Neural Networks:谱域图卷积 - kkzhang - 博客园

图卷积神经网络笔记——第二章:谱域图卷积介绍(1)_Ma Sizhou的博客-CSDN博客_谱域图卷积

最美数学系列-什么是切比雪夫多项式?_哔哩哔哩_bilibili

哈密顿一凯莱定理_百度百科

你可能感兴趣的:(GNN,algorithms,深度学习,人工智能)