本文相当于是对The Annotated Diffusion Model的代码理解后加的注释,很详尽,具体有些公式图片不太好显示,在vx公众号“一蓑烟雨晴”回复“100”下载notebook版本的代码文件。
import math
from inspect import isfunction # inspect模块https://www.cnblogs.com/yaohong/p/8874154.html主要提供了四种用处:1.对是否是模块、框架、函数进行类型检查 2.获取源码 3.获取类或者函数的参数信息 4.解析堆栈
from functools import partial # 偏函数 https://www.runoob.com/w3cnote/python-partial.html
%matplotlib inline
import matplotlib.pyplot as plt
from tqdm.auto import tqdm # 进度条
from einops import rearrange # einops把张量的维度操作具象化,让开发者“想出即写出
import torch
from torch import nn, einsum # einsum很方便的实现复杂的张量操作 https://zhuanlan.zhihu.com/p/361209187
import torch.nn.functional as F
一些辅助性的小函数
# x是否为None,不是None则返回True,是None则返回False
def exists(x):
return x is not None
# 如果val非None则返回val,否则(如果d为函数则返回d(),否则返回d)
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
# 残差连接
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, *args, **kwargs):
return self.fn(x, *args, **kwargs) + x
# 上采样
def Upsample(dim):
return nn.ConvTranspose2d(dim, dim, 4, 2, 1)
# 下采样
def Downsample(dim):
return nn.Conv2d(dim, dim, 4, 2, 1)
# 一种位置编码,前一半sin后一半cos
# eg:维数dim=5,time取1和2两个时间
# layer = SinusoidalPositionEmbeddings(5)
# embeddings = layer(torch.tensor([1,2]))
# return embeddings的形状是(2,5),第一行是t=1时的位置编码,第二行是t=2时的位置编码
# 额外连接(transformer原作位置编码实现):https://github.com/jalammar/jalammar.github.io/blob/master/notebookes/transformer/transformer_positional_encoding_graph.ipynb
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, time):
device = time.device
half_dim = self.dim // 2
embeddings = math.log(10000) / (half_dim - 1)
embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
embeddings = time[:, None] * embeddings[None, :]
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
return embeddings
# Block类,先卷积后GN归一化后siLU激活函数,若存在scale_shift则进行一定变换
class Block(nn.Module):
def __init__(self, dim, dim_out, groups = 8):
super().__init__()
self.proj = nn.Conv2d(dim, dim_out, 3, padding = 1)
self.norm = nn.GroupNorm(groups, dim_out) #GN归一化 https://zhuanlan.zhihu.com/p/177853578
self.act = nn.SiLU()
def forward(self, x, scale_shift = None):
x = self.proj(x)
x = self.norm(x)
if exists(scale_shift):
scale, shift = scale_shift
x = x * (scale + 1) + shift
x = self.act(x)
return x
#例:dim=8,dim_out=16,time_emb_dim=2, groups=8
#Block = ResnetBlock(8, 16, time_emb_dim=2, groups=8)
#a = torch.ones(1, 8, 64, 64)
#b = torch.ones(1, 2)
#result = Block(a, b)
class ResnetBlock(nn.Module):
"""https://arxiv.org/abs/1512.03385"""
def __init__(self, dim, dim_out, *, time_emb_dim=None, groups=8):
super().__init__()
# 如果time_emb_dim存在则有mlp层
self.mlp = (
nn.Sequential(nn.SiLU(), nn.Linear(time_emb_dim, dim_out))
if exists(time_emb_dim)
else None
)
self.block1 = Block(dim, dim_out, groups=groups)
self.block2 = Block(dim_out, dim_out, groups=groups)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() #nn.Identity()有 https://blog.csdn.net/artistkeepmonkey/article/details/115067356
def forward(self, x, time_emb=None):
h = self.block1(x) # torch.Size([1, 16, 64, 64])
if exists(self.mlp) and exists(time_emb):
# time_emb为torch.Size([1, 2])
time_emb = self.mlp(time_emb) # torch.Size([1, 16])
# rearrange(time_emb, "b c -> b c 1 1")为torch.Size([1, 16, 1, 1])
h = rearrange(time_emb, "b c -> b c 1 1") + h # torch.Size([1, 16, 64, 64])
h = self.block2(h) # torch.Size([1, 16, 64, 64])
return h + self.res_conv(x) # return最后补了残差连接 # torch.Size([1, 16, 64, 64])
# 可以参考class ResnetBlock进行理解
class ConvNextBlock(nn.Module):
"""https://arxiv.org/abs/2201.03545"""
def __init__(self, dim, dim_out, *, time_emb_dim=None, mult=2, norm=True):
super().__init__()
# 如果time_emb_dim存在则有mlp层
self.mlp = (
nn.Sequential(nn.GELU(), nn.Linear(time_emb_dim, dim))
if exists(time_emb_dim)
else None
)
self.ds_conv = nn.Conv2d(dim, dim, 7, padding=3, groups=dim)
self.net = nn.Sequential(
nn.GroupNorm(1, dim) if norm else nn.Identity(),
nn.Conv2d(dim, dim_out * mult, 3, padding=1),
nn.GELU(), # Gaussian Error Linear Unit
nn.GroupNorm(1, dim_out * mult),
nn.Conv2d(dim_out * mult, dim_out, 3, padding=1),
)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x, time_emb=None):
h = self.ds_conv(x)
if exists(self.mlp) and exists(time_emb):
assert exists(time_emb), "time embedding must be passed in"
condition = self.mlp(time_emb)
h = h + rearrange(condition, "b c -> b c 1 1")
h = self.net(h)
return h + self.res_conv(x)
Attention流程图
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AdG36fxR-1664237054138)(attachment:%E6%9C%AA%E5%91%BD%E5%90%8D%E6%96%87%E4%BB%B6%20%281%29.png)]
class Attention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x).chunk(3, dim=1)# qkv为一个元组,其中每一个元素的大小为torch.Size([b, hidden_dim, h, w])
q, k, v = map(
lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv
) # qkv中每个元素从torch.Size([b, hidden_dim, h, w])变为torch.Size([b, heads, dim_head, h*w])
q = q * self.scale # q扩大dim_head**-0.5倍
sim = einsum("b h d i, b h d j -> b h i j", q, k) # sim有torch.Size([b, heads, h*w, h*w])
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1) # attn有torch.Size([b, heads, h*w, h*w])
out = einsum("b h i j, b h d j -> b h i d", attn, v) # [b, heads, h*w, h*w]和[b, heads, dim_head, h*w] 得 out为[b, heads, h*w, dim_head]
out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w) # 得out为[b, hidden_dim, h, w]
return self.to_out(out) # 得 [b, dim, h, w]
# 和class Attention几乎一致
class LinearAttention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
self.to_out = nn.Sequential(nn.Conv2d(hidden_dim, dim, 1),
nn.GroupNorm(1, dim))
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x).chunk(3, dim=1)
q, k, v = map(
lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv
)
q = q.softmax(dim=-2)
k = k.softmax(dim=-1)
q = q * self.scale
context = torch.einsum("b h d n, b h e n -> b h d e", k, v)
out = torch.einsum("b h d e, b h d n -> b h e n", context, q)
out = rearrange(out, "b h c (x y) -> b (h c) x y", h=self.heads, x=h, y=w)
return self.to_out(out)
# 先norm后fn
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = nn.GroupNorm(1, dim)
def forward(self, x):
x = self.norm(x)
return self.fn(x)
class Unet(nn.Module):
def __init__(
self,
dim, # 下例中,dim=image_size=28
init_dim=None,# 默认为None,最终取dim // 3 * 2
out_dim=None, # 默认为None,最终取channels
dim_mults=(1,2,4,8),
channels=3, # 通道数默认为3
with_time_emb=True, # 是否使用embeddings
resnet_block_groups=8, # 如果使用ResnetBlock,groups=resnet_block_groups
use_convnext=True, # 是True使用ConvNextBlock,是Flase使用ResnetBlock
convnext_mult=2, # 如果使用ConvNextBlock,mult=convnext_mult
):
super().__init__()
self.channels = channels
init_dim = default(init_dim, dim // 3 * 2)
self.init_conv = nn.Conv2d(channels, init_dim, 7, padding=3)
dims = [init_dim, *map(lambda m: dim * m, dim_mults)] # 从头到尾dim组成的列表
in_out = list(zip(dims[:-1], dims[1:])) # dim对组成的列表
# 使用ConvNextBlock或ResnetBlock
if use_convnext:
block_klass = partial(ConvNextBlock, mult=convnext_mult)
else:
block_klass = partial(ResnetBlock, groups=resnet_block_groups)
# time embeddings
if with_time_emb:
time_dim = dim * 4
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(dim),
nn.Linear(dim, time_dim),
nn.GELU(),
nn.Linear(time_dim, time_dim),
)
else:
time_dim = None
self.time_mlp = None
# layers
self.downs = nn.ModuleList([]) # 初始化下采样网络列表
self.ups = nn.ModuleList([]) # 初始化上采样网络列表
num_resolutions = len(in_out) # dim对组成的列表的长度
for ind, (dim_in, dim_out) in enumerate(in_out):
is_last = ind >= (num_resolutions - 1) # 是否到了最后一对
self.downs.append(
nn.ModuleList(
[
block_klass(dim_in, dim_out, time_emb_dim=time_dim),
block_klass(dim_out, dim_out, time_emb_dim=time_dim),
Residual(PreNorm(dim_out, LinearAttention(dim_out))),
Downsample(dim_out) if not is_last else nn.Identity(),
]
)
)
mid_dim = dims[-1]
self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)
self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))
self.mid_block2 = block_klass(mid_dim, mid_dim,time_emb_dim=time_dim)
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
is_last = ind >= (num_resolutions - 1)
self.ups.append(
nn.ModuleList(
[
block_klass(dim_out * 2, dim_in, time_emb_dim=time_dim),
block_klass(dim_in, dim_in, time_emb_dim=time_dim),
Residual(PreNorm(dim_in, LinearAttention(dim_in))),
Upsample(dim_in) if not is_last else nn.Identity(),
]
)
)
out_dim = default(out_dim, channels)
self.final_conv = nn.Sequential(
block_klass(dim, dim), nn.Conv2d(dim, out_dim, 1)
)
def forward(self, x, time):
x = self.init_conv(x)
t = self.time_mlp(time) if exists(self.time_mlp) else None
h = []
# downsample
for block1, block2, attn, downsample in self.downs:
x = block1(x, t)
x = block2(x, t)
x = attn(x)
h.append(x)
x = downsample(x)
# bottleneck
x = self.mid_block1(x, t)
x = self.mid_attn(x)
x = self.mid_block2(x, t)
# upsample
for block1, block2, attn, upsample in self.ups:
x = torch.cat((x, h.pop()), dim=1)
x = block1(x, t)
x = block2(x, t)
x = attn(x)
x = upsample(x)
return self.final_conv(x)
四种beta选择
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule as proposed in https://arxiv.org/abs/2102.09672
"""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0.0001, 0.9999)
def linear_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return torch.linspace(beta_start, beta_end, timesteps)
def quadratic_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return torch.linspace(beta_start**0.5, beta_end**0.5, timesteps) ** 2
def sigmoid_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
betas = torch.linspace(-6, 6, timesteps)
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
import numpy as np
x = np.linspace(1,1001,1000)
timesteps = 1000
fig, ax = plt.subplots() # 创建图实例
ax.plot(x, (cosine_beta_schedule(timesteps, s=0.008)/50).numpy(), label='cosine')
ax.plot(x, linear_beta_schedule(timesteps).numpy(), label='linear')
ax.plot(x, quadratic_beta_schedule(timesteps).numpy(), label='quadratic')
ax.plot(x, sigmoid_beta_schedule(timesteps).numpy(), label='sigmoid')
plt.legend()
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lISFybSq-1664237054141)(output_11_0.png)]
betas: β \beta β
alphas: α = 1 − β \alpha = 1-\beta α=1−β
alphas_cumprod: α t ‾ = ∏ s = 1 t α s \overline{\alpha_t} = \prod_{s=1}^{t}\alpha_s αt=∏s=1tαs
alphas_cumprod_prev: α t − 1 ‾ \overline{\alpha_{t-1}} αt−1
sqrt_recip_alphas: 1 / α t ‾ 1/\sqrt{\overline{\alpha_t}} 1/αt
sqrt_alphas_cumprod: α t ‾ \sqrt{\overline{\alpha_t}} αt
sqrt_one_minus_alphas_cumprod: 1 − α t ‾ \sqrt{1-\overline{\alpha_t}} 1−αt
posterior_variance: β ∗ ( 1 − α t − 1 ‾ ) / ( 1 − α t ‾ ) \beta * (1-\overline{\alpha_{t-1}}) / (1-\overline{\alpha_{t}}) β∗(1−αt−1)/(1−αt)
timesteps = 200
# define beta schedule
betas = linear_beta_schedule(timesteps=timesteps)
# define alphas
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
sqrt_recip_alphas = torch.sqrt(1.0 / alphas)
# calculations for diffusion q(x_t | x_{t-1}) and others
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# sqrt_alphas_cumprod = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# x_start = torch.ones([1, 3, 8, 8])
# out = extract(a=sqrt_alphas_cumprod, t=torch.tensor([5]), x_shape=x_start.shape)
# print(out.shape)
def extract(a, t, x_shape):
batch_size = t.shape[0]
out = a.gather(-1, t.cpu())
return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)
# 随便导入一个图片
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
image
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gw6bPY7E-1664237054143)(output_14_0.png)]
# 进行一些变化
from torchvision.transforms import Compose, ToTensor, Lambda, ToPILImage, CenterCrop, Resize
image_size = 128
transform = Compose([
Resize(image_size), # 变为形状为128*128
CenterCrop(image_size), # 中心裁剪
ToTensor(), # turn into Numpy array of shape HWC, divide by 255
Lambda(lambda t: (t * 2) - 1), # 变为[-1,1]范围
])
x_start = transform(image).unsqueeze(0)
x_start.shape
torch.Size([1, 3, 128, 128])
import numpy as np
reverse_transform = Compose([
Lambda(lambda t: (t + 1) / 2),
Lambda(lambda t: t.permute(1, 2, 0)), # CHW to HWC
Lambda(lambda t: t * 255.),
Lambda(lambda t: t.numpy().astype(np.uint8)),
ToPILImage(),
])
# 处理后的图片
reverse_transform(x_start.squeeze())
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uxtXvcUu-1664237054146)(output_17_0.png)]
x t = α t ‾ x 0 + 1 − α t ‾ ϵ x_t = \sqrt{\overline{\alpha_t}}x_0+\sqrt{1-\overline{\alpha_t}}\epsilon xt=αtx0+1−αtϵ
# forward diffusion (using the nice property)
def q_sample(x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
sqrt_alphas_cumprod_t = extract(sqrt_alphas_cumprod, t, x_start.shape)
sqrt_one_minus_alphas_cumprod_t = extract(sqrt_one_minus_alphas_cumprod, t, x_start.shape)
return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise
def get_noisy_image(x_start, t):
# add noise
x_noisy = q_sample(x_start, t=t)
# turn back into PIL image
noisy_image = reverse_transform(x_noisy.squeeze())
return noisy_image
# take time step
t = torch.tensor([40])
get_noisy_image(x_start, t)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R5teNXT1-1664237054151)(output_21_0.png)]
import matplotlib.pyplot as plt
# use seed for reproducability
torch.manual_seed(0) # torch.manual_seed(0)
# pytorch官方的一个画图函数
# source: https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py
def plot(imgs, with_orig=False, row_title=None, **imshow_kwargs):
if not isinstance(imgs[0], list):
# Make a 2d grid even if there's just 1 row
imgs = [imgs]
num_rows = len(imgs)
num_cols = len(imgs[0]) + with_orig
fig, axs = plt.subplots(figsize=(200,200), nrows=num_rows, ncols=num_cols, squeeze=False)
for row_idx, row in enumerate(imgs):
row = [image] + row if with_orig else row
for col_idx, img in enumerate(row):
ax = axs[row_idx, col_idx]
ax.imshow(np.asarray(img), **imshow_kwargs)
ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])
if with_orig:
axs[0, 0].set(title='Original image')
axs[0, 0].title.set_size(8)
if row_title is not None:
for row_idx in range(num_rows):
axs[row_idx, 0].set(ylabel=row_title[row_idx])
plt.tight_layout()
plt.show()
# 观察结果多次前向传播后的图像
plot([get_noisy_image(x_start, torch.tensor([t])) for t in [0, 50, 100, 150, 199]])
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Nd2MVf38-1664237054157)(output_23_0.png)]
# 三种损失函数有l1,l2和huber,默认为l1
def p_losses(denoise_model, x_start, t, noise=None, loss_type="l1"):
if noise is None:
noise = torch.randn_like(x_start)
x_noisy = q_sample(x_start=x_start, t=t, noise=noise)
predicted_noise = denoise_model(x_noisy, t)
if loss_type == 'l1':
loss = F.l1_loss(noise, predicted_noise)
elif loss_type == 'l2':
loss = F.mse_loss(noise, predicted_noise)
elif loss_type == "huber":
loss = F.smooth_l1_loss(noise, predicted_noise)
else:
raise NotImplementedError()
return loss
from datasets import load_dataset
# load dataset from the hub
dataset = load_dataset("fashion_mnist")
image_size = 28
channels = 1
batch_size = 128
from torchvision import transforms
from torch.utils.data import DataLoader
# define image transformations (e.g. using torchvision)
transform = Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Lambda(lambda t: (t * 2) - 1)
])
# define function
def transforms(examples):
examples["pixel_values"] = [transform(image.convert("L")) for image in examples["image"]]
del examples["image"]
return examples
# 得到变换之后的数据集
transformed_dataset = dataset.with_transform(transforms).remove_columns("label")
# create dataloader
dataloader = DataLoader(transformed_dataset["train"], batch_size=batch_size, shuffle=True)
$
\begin{aligned}
\tilde{\boldsymbol{\mu}}{t} &=\frac{1}{\sqrt{\alpha{t}}}\left(\mathbf{x}{t}-\frac{\beta{t}}{\sqrt{1-\bar{\alpha}{t}}} \mathbf{z}{t}\right)
\end{aligned}
$
其中, z t z_t zt由model(x,t)得
@torch.no_grad()
def p_sample(model, x, t, t_index):
# p_sample(model, img, torch.full((b,),i,device=device,dtype=torch.long),i)
betas_t = extract(betas, t, x.shape)
sqrt_one_minus_alphas_cumprod_t = extract(sqrt_one_minus_alphas_cumprod, t, x.shape)
sqrt_recip_alphas_t = extract(sqrt_recip_alphas, t, x.shape)
# Equation 11 in the paper
# Use our model (noise predictor) to predict the mean
model_mean = sqrt_recip_alphas_t * (x - betas_t * model(x, t) / sqrt_one_minus_alphas_cumprod_t)
if t_index == 0:
return model_mean
else: # 加一定的噪声
posterior_variance_t = extract(posterior_variance, t, x.shape)
noise = torch.randn_like(x)
# Algorithm 2 line 4:
return model_mean + torch.sqrt(posterior_variance_t) * noise
@torch.no_grad()
def p_sample_loop(model, shape):
# 从噪声中逐步采样
device = next(model.parameters()).device
b = shape[0]
img = torch.randn(shape, device=device)
imgs = []
for i in tqdm(reversed(range(0, timesteps)), desc='sampling loop time step',total=timesteps):
img = p_sample(model, img, torch.full((b,),i,device=device,dtype=torch.long),i)
imgs.append(img.cpu().numpy())
return imgs
@torch.no_grad()
def sample(model, image_size, batch_size=16, channels=3):
return p_sample_loop(model,shape=(batch_size,channels, image_size, image_size))
from pathlib import Path
# 例如num = 10, divisor = 3,得[3,3,3,1]
def num_to_groups(num, divisor):
groups = num // divisor
remainder = num % divisor
arr = [divisor] * groups
if remainder > 0:
arr.append(remainder)
return arr
results_folder = Path("./results")
results_folder.mkdir(exist_ok = True) # https://zhuanlan.zhihu.com/p/317254621
save_and_sample_every = 1000
0
from torch.optim import Adam
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Unet(
dim=image_size,
channels = channels,
dim_mults=(1,2,4)
)
model.to(device)
optimizer = Adam(model.parameters(), lr=1e-3)
from torchvision.utils import save_image
epochs = 5
for epoch in range(epochs):
for step, batch in enumerate(dataloader):
optimizer.zero_grad() # 优化器数值清零
batch_size = batch["pixel_values"].shape[0]
batch = batch["pixel_values"].to(device)
# Algorithm 1 line 3: sample t uniformally for every example in the batch
t = torch.randint(0, timesteps, (batch_size,), device=device).long() # 随机取t
loss = p_losses(model, batch, t, loss_type="huber")
if step % 100 == 0:
print("Loss:", loss.item())
loss.backward()
optimizer.step()
# save generated images
if step != 0 and step % save_and_sample_every == 0:
milestone = step // save_and_sample_every
batches = num_to_groups(4, batch_size)
all_images_list = list(map(lambda n: sample(model, batch_size=n, channels=channels), batches))
all_images = torch.cat(all_images_list, dim=0)
all_images = (all_images + 1) * 0.5
save_image(all_images, str(results_folder / f'sample-{milestone}.png'), nrow = 6)
# sample 64 images
samples = sample(model, image_size=image_size, batch_size=64, channels=channels)
# show a random one
random_index = 5
plt.imshow(samples[-1][random_index].reshape(image_size, image_size, channels), cmap="gray")
tensor([6, 9, 8, 3, 7])
# 展示从噪声生成图像的过程
import matplotlib.animation as animation
random_index = 53
fig = plt.figure()
ims = []
for i in range(timesteps):
im = plt.imshow(samples[i][random_index].reshape(image_size, image_size, channels), cmap="gray", animated=True)
ims.append([im])
animate = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=1000)
animate.save('diffusion.gif')
plt.show()