3D CNN过程详解
区别
1维卷积,核沿1个方向移动。一维CNN的输入和输出数据是2维的。主要用于时间序列数据。
2维卷积,核沿2个方向移动。二维CNN的输入输出数据是3维的。主要用于图像数据。
3维卷积,核沿3个方向移动。三维CNN的输入输出数据是4维的。主要用于3D图像数据(MRI,CT扫描)。
参考
卷积神经网络
1、padding
在卷积操作中,过滤器(核)的大小通常为奇数 3x3,5x5。好处有两点:
2、stride
卷积中的步长大小为s,指过滤器在输入数据上,水平/竖直方向上每次移动的步长,在Padding 公式的基础上,最终卷积输出的维度大小为:
⌊(n+2p−f)/s+1⌋×⌊(n+2p−f)/s+1⌋
⌊⌋符号指向下取整,在python 中为floor地板除操作。
3、channel
4、pooling
关于2D CNN与3D CNN实例比较
数据集:3Dmnist
环境:python3.7
tensorflow2.1
keras2.3.1
2D CNN
#载入模型
from __future__ import division, print_function, absolute_import
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.callbacks import ReduceLROnPlateau, TensorBoard
import h5py
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split
#设置超参数
# set up hyperparameter
batch_size = 64
epochs = 20
#读取本地数据集
with h5py.File("full_dataset_vectors.h5","r") as h5:
X_train, y_train = h5["X_train"][:], h5["y_train"][:]
X_test, y_test = h5["X_test"][:], h5["y_test"][:]
#验证集图片的标签转化为one-hot的数组
y_train = to_categorical(y_train, num_classes=10)
#使用2D卷积需要用到一个三维的矩阵
X_train = X_train.reshape(-1, 16, 16, 16)
X_test = X_test.reshape(-1, 16, 16, 16)
X_train,X_val,y_train,y_val = train_test_split(X_train, y_train,
test_size=0.25,
random_state=42)
#定义一个二维卷积层
# Conv2D layer
def Conv(filters=16, kernel_size=(3,3), activation='relu', input_shape=None):
if input_shape:
return Conv2D(filters=filters, kernel_size = kernel_size, padding='Same'
, activation=activation, input_shape=input_shape)
else:
return Conv2D(filters=filters, kernel_size = kernel_size, padding='Same'
, activation=activation)
#定义模型架构
# Define model
def CNN(input_dim, num_classes):
model = Sequential()
model.add((Conv(8, (3, 3), input_shape=input_dim)))
model.add((Conv(16, (3, 3))))
# model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv(32, (3, 3)))
model.add(Conv(64, (3, 3)))
model.add(BatchNormalization())
model.add(MaxPool2D())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
return model
#定义训练参数,验证方法,保存模型以及加载模型
# Train Model
def train(optimizer, scheduler, gen):
global model
tensorboard = TensorBoard()
print("Training...Please wait")
model.compile(optimizer='adam', loss="categorical_crossentropy", metrics=["accuracy"])
model.fit_generator(gen.flow(X_train, y_train, batch_size=batch_size),
epochs=epochs, validation_data=(X_val, y_val),
verbose=2, steps_per_epoch=X_train.shape[0] // batch_size,
callbacks=[scheduler, tensorboard])
def evaluate():
global model
pred = model.predict(X_test)
pred = np.argmax(pred, axis=1)
print(accuracy_score(pred, y_test))
# Heat map
array = confusion_matrix(y_test, pred)
cm = pd.DataFrame(array, index=range(10), columns=range(10))
plt.figure(figsize=(20, 20))
sns.heatmap(cm, annot=True)
plt.show()
def save_model():
global model
model_json = model.to_json()
with open('model_2D.json', 'w') as f:
f.write(model_json)
model.save_weights('model_2D.h5')
print("Model Saved")
def load_model():
f = open("model_2D.json", "r")
model_json = f.read()
f.close()
loaded_model = model_from_json(model_json)
loaded_model.load_weights('model_2D.h5')
print("Model Loaded.")
return loaded_model
if __name__ == '__main__':
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
scheduler = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=1e-5)
model = CNN((16, 16, 16), 10)
gen = ImageDataGenerator(rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1)
gen.fit(X_train)
train(optimizer, scheduler, gen)
evaluate()
save_model()
结果
Training...Please wait
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 16, 16, 8) 1160
_________________________________________________________________
conv2d_1 (Conv2D) (None, 16, 16, 16) 1168
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 8, 8, 16) 0
_________________________________________________________________
dropout (Dropout) (None, 8, 8, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 8, 8, 32) 4640
_________________________________________________________________
conv2d_3 (Conv2D) (None, 8, 8, 64) 18496
_________________________________________________________________
batch_normalization (BatchNo (None, 8, 8, 64) 256
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 4, 4, 64) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 4, 4, 64) 0
_________________________________________________________________
flatten (Flatten) (None, 1024) 0
_________________________________________________________________
dense (Dense) (None, 4096) 4198400
_________________________________________________________________
dropout_2 (Dropout) (None, 4096) 0
_________________________________________________________________
dense_1 (Dense) (None, 1024) 4195328
_________________________________________________________________
dropout_3 (Dropout) (None, 1024) 0
_________________________________________________________________
dense_2 (Dense) (None, 10) 10250
=================================================================
Total params: 8,429,698
Trainable params: 8,429,570
Non-trainable params: 128
_________________________________________________________________
Train for 117 steps, validate on 2500 samples
Epoch 1/20
117/117 - 9s - loss: 1.9939 - accuracy: 0.3085 - val_loss: 2.2722 - val_accuracy: 0.1252
Epoch 2/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.4384 - accuracy: 0.4944 - val_loss: 1.9317 - val_accuracy: 0.3584
Epoch 3/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.3030 - accuracy: 0.5395 - val_loss: 1.6192 - val_accuracy: 0.4788
Epoch 4/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.2372 - accuracy: 0.5594 - val_loss: 1.3695 - val_accuracy: 0.5808
Epoch 5/20
117/117 - 5s - loss: 1.1820 - accuracy: 0.5783 - val_loss: 1.1514 - val_accuracy: 0.6184
Epoch 6/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.1672 - accuracy: 0.5901 - val_loss: 1.0569 - val_accuracy: 0.6252
Epoch 7/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.1454 - accuracy: 0.5925 - val_loss: 1.0906 - val_accuracy: 0.6112
Epoch 8/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.1074 - accuracy: 0.6065 - val_loss: 0.9975 - val_accuracy: 0.6516
Epoch 9/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.0965 - accuracy: 0.6093 - val_loss: 0.9653 - val_accuracy: 0.6644
Epoch 10/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 4s - loss: 1.0863 - accuracy: 0.6153 - val_loss: 1.0170 - val_accuracy: 0.6396
Epoch 11/20
117/117 - 4s - loss: 1.0773 - accuracy: 0.6182 - val_loss: 0.9661 - val_accuracy: 0.6580
Epoch 12/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 4s - loss: 1.0577 - accuracy: 0.6263 - val_loss: 1.0404 - val_accuracy: 0.6388
Epoch 13/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 4s - loss: 1.0354 - accuracy: 0.6299 - val_loss: 0.9637 - val_accuracy: 0.6656
Epoch 14/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.0324 - accuracy: 0.6260 - val_loss: 0.9640 - val_accuracy: 0.6608
Epoch 15/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.0233 - accuracy: 0.6352 - val_loss: 0.9413 - val_accuracy: 0.6680
Epoch 16/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.0041 - accuracy: 0.6435 - val_loss: 0.9782 - val_accuracy: 0.6504
Epoch 17/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 0.9987 - accuracy: 0.6505 - val_loss: 0.9292 - val_accuracy: 0.6696
Epoch 18/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 0.9927 - accuracy: 0.6487 - val_loss: 0.9566 - val_accuracy: 0.6584
Epoch 19/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 0.9940 - accuracy: 0.6501 - val_loss: 0.9418 - val_accuracy: 0.6664
Epoch 20/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 4s - loss: 0.9892 - accuracy: 0.6526 - val_loss: 0.9247 - val_accuracy: 0.6752
0.677
Model Saved
Process finished with exit code 0
3D CNN
from __future__ import division, print_function, absolute_import
from tensorflow.keras.models import Sequential, model_from_json
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv3D, MaxPool3D, BatchNormalization, Input
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from tensorflow.keras.callbacks import ReduceLROnPlateau, TensorBoard
#Using TensorFlow backend.
import h5py
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
from sklearn.metrics import confusion_matrix, accuracy_score
# Hyper Parameter
batch_size = 86
epochs = 20
# Set up TensorBoard
tensorboard = TensorBoard(batch_size=batch_size)
with h5py.File("full_dataset_vectors.h5", 'r') as h5:
X_train, y_train = h5["X_train"][:], h5["y_train"][:]
X_test, y_test = h5["X_test"][:], h5["y_test"][:]
# Translate data to color
#给图片添加 RGB 数据通道的维度
def array_to_color(array, cmap="Oranges"):
s_m = plt.cm.ScalarMappable(cmap=cmap)
return s_m.to_rgba(array)[:,:-1]
def translate(x):
xx = np.ndarray((x.shape[0], 4096, 3))
for i in range(x.shape[0]):
xx[i] = array_to_color(x[i])
if i % 1000 == 0:
print(i)
# Free Memory
del x
return xx
#数据转换为
y_train = to_categorical(y_train, num_classes=10)
# y_test = to_categorical(y_test, num_classes=10)
X_train = translate(X_train).reshape(-1, 16, 16, 16, 3)
X_test = translate(X_test).reshape(-1, 16, 16, 16, 3)
# Conv3D layer
def Conv(filters=16, kernel_size=(3,3,3), activation='relu', input_shape=None):
if input_shape:
return Conv3D(filters=filters, kernel_size=kernel_size, padding='Same', activation=activation, input_shape=input_shape)
else:
return Conv3D(filters=filters, kernel_size=kernel_size, padding='Same', activation=activation)
# Define Model
def CNN(input_dim, num_classes):
model = Sequential()
model.add(Conv(8, (3,3,3), input_shape=input_dim))
model.add(Conv(16, (3,3,3)))
# model.add(BatchNormalization())
model.add(MaxPool3D())
# model.add(Dropout(0.25))
model.add(Conv(32, (3,3,3)))
model.add(Conv(64, (3,3,3)))
model.add(BatchNormalization())
model.add(MaxPool3D())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
return model
# Train Model
def train(optimizer, scheduler):
global model
print("Training...")
model.compile(optimizer = 'adam' , loss = "categorical_crossentropy", metrics=["accuracy"])
model.summary()
model.fit(x=X_train, y=y_train, batch_size=batch_size, epochs=epochs, validation_split=0.15,
verbose=2, callbacks=[scheduler, tensorboard])
def evaluate():
global model
pred = model.predict(X_test)
pred = np.argmax(pred, axis=1)
print(accuracy_score(pred,y_test))
# Heat Map
array = confusion_matrix(y_test, pred)
cm = pd.DataFrame(array, index = range(10), columns = range(10))
plt.figure(figsize=(20,20))
sns.heatmap(cm, annot=True)
plt.show()
def save_model():
global model
model_json = model.to_json()
with open('model/model_3D.json', 'w') as f:
f.write(model_json)
model.save_weights('model/model_3D.h5')
print('Model Saved.')
def load_model():
f = open('model/model_3D.json', 'r')
model_json = f.read()
f.close()
loaded_model = model_from_json(model_json)
loaded_model.load_weights('model/model_3D.h5')
print("Model Loaded.")
return loaded_model
if __name__ == '__main__':
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
scheduler = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=1e-5)
model = CNN((16,16,16,3), 10)
train(optimizer, scheduler)
evaluate()
save_model()
结果
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
0
1000
Training...
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv3d (Conv3D) (None, 16, 16, 16, 8) 656
_________________________________________________________________
conv3d_1 (Conv3D) (None, 16, 16, 16, 16) 3472
_________________________________________________________________
max_pooling3d (MaxPooling3D) (None, 8, 8, 8, 16) 0
_________________________________________________________________
conv3d_2 (Conv3D) (None, 8, 8, 8, 32) 13856
_________________________________________________________________
conv3d_3 (Conv3D) (None, 8, 8, 8, 64) 55360
_________________________________________________________________
batch_normalization (BatchNo (None, 8, 8, 8, 64) 256
_________________________________________________________________
max_pooling3d_1 (MaxPooling3 (None, 4, 4, 4, 64) 0
_________________________________________________________________
dropout (Dropout) (None, 4, 4, 4, 64) 0
_________________________________________________________________
flatten (Flatten) (None, 4096) 0
_________________________________________________________________
dense (Dense) (None, 4096) 16781312
_________________________________________________________________
dropout_1 (Dropout) (None, 4096) 0
_________________________________________________________________
dense_1 (Dense) (None, 1024) 4195328
_________________________________________________________________
dropout_2 (Dropout) (None, 1024) 0
_________________________________________________________________
dense_2 (Dense) (None, 10) 10250
=================================================================
Total params: 21,060,490
Trainable params: 21,060,362
Non-trainable params: 128
_________________________________________________________________
Train on 8500 samples, validate on 1500 samples
Epoch 1/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 9s - loss: 2.6471 - accuracy: 0.1839 - val_loss: 2.2708 - val_accuracy: 0.2000
Epoch 2/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 1.6287 - accuracy: 0.4285 - val_loss: 2.8031 - val_accuracy: 0.1033
Epoch 3/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 1.2695 - accuracy: 0.5579 - val_loss: 3.1281 - val_accuracy: 0.1900
Epoch 4/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 1.1059 - accuracy: 0.6122 - val_loss: 3.4772 - val_accuracy: 0.2380
Epoch 5/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 1.0447 - accuracy: 0.6307 - val_loss: 1.3234 - val_accuracy: 0.5460
Epoch 6/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.9735 - accuracy: 0.6654 - val_loss: 1.3245 - val_accuracy: 0.5960
Epoch 7/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.9088 - accuracy: 0.6832 - val_loss: 0.9973 - val_accuracy: 0.6500
Epoch 8/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.8433 - accuracy: 0.7093 - val_loss: 1.1331 - val_accuracy: 0.6413
Epoch 9/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.7784 - accuracy: 0.7293 - val_loss: 0.9897 - val_accuracy: 0.6687
Epoch 10/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.7293 - accuracy: 0.7451 - val_loss: 0.9537 - val_accuracy: 0.6693
Epoch 11/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.6554 - accuracy: 0.7719 - val_loss: 0.9934 - val_accuracy: 0.6653
Epoch 12/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.6129 - accuracy: 0.7887 - val_loss: 0.8710 - val_accuracy: 0.6987
Epoch 13/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.5138 - accuracy: 0.8218 - val_loss: 0.8410 - val_accuracy: 0.7220
Epoch 14/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.4538 - accuracy: 0.8418 - val_loss: 0.8636 - val_accuracy: 0.7200
Epoch 15/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.4126 - accuracy: 0.8579 - val_loss: 1.7215 - val_accuracy: 0.6053
Epoch 16/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.3595 - accuracy: 0.8766 - val_loss: 0.9869 - val_accuracy: 0.7327
Epoch 17/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.3179 - accuracy: 0.8892 - val_loss: 1.0798 - val_accuracy: 0.7173
Epoch 18/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.3042 - accuracy: 0.8953 - val_loss: 1.0762 - val_accuracy: 0.6927
Epoch 19/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.2573 - accuracy: 0.9146 - val_loss: 1.0316 - val_accuracy: 0.7207
Epoch 20/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.2203 - accuracy: 0.9236 - val_loss: 0.9373 - val_accuracy: 0.7267
0.7325
Model Saved.
Process finished with exit code 0