现在开始LVI-SAM 视觉部分的代码阅读。
头文件、命名空间
#pragma once // 只编译一次
#include
#include
#include
#include
#include
#include
#include
#include "camera_models/CameraFactory.h"
#include "camera_models/CataCamera.h"
#include "camera_models/PinholeCamera.h"
#include "parameters.h"
#include "tic_toc.h"
using namespace std;
using namespace camodocal;
using namespace Eigen;
这上面没啥好说的,老一套了,所以不多讲。
一些函数
// 判断跟踪的特征点是否在图像边界内
bool inBorder(const cv::Point2f &pt);
// 去除无法跟踪的特征点
void reduceVector(vector &v, vector status);
void reduceVector(vector &v, vector status);
class FeatureTracker
{
public:
FeatureTracker();
void readImage(const cv::Mat &_img,double _cur_time); // 对图像使用光流法进行特征点跟踪
void setMask(); // 对特征点进行排序并去除密集点
void addPoints(); // 添加新检测到的特征点n_pts,ID初始化-1,跟踪次数1
bool updateID(unsigned int i); // 更新特征点id
void readIntrinsicParameter(const string &calib_file); // 读取相机内参
void showUndistortion(const string &name); // 显示去畸变矫正后的特征点
void rejectWithF(); // 通过F矩阵去除outliers
void undistortedPoints(); // 对特征点的图像坐标去畸变矫正,并计算每个角点的速度
一些在头文件里面定义的函数,具体实现的话,还是要在cpp文件中进行详细的阅读。这些函数没啥好讲的,作用功能都写在注释里面了,自行阅读。
一些变量
cv::Mat mask; // 图像掩码 好像也叫掩膜
cv::Mat fisheye_mask; // 鱼眼相机mask,用来去除边缘噪点
// prev_img是上一次发布的帧的图像数据
// cur_img是光流跟踪的前一帧的图像数据
// forw_img是光流跟踪的后一帧的图像数据
cv::Mat prev_img, cur_img, forw_img;
vector n_pts; // 每一帧中新提取的特征点
vector prev_pts, cur_pts, forw_pts; // 对应的图像特征点
vector prev_un_pts, cur_un_pts; // 归一化相机坐标系下的坐标
vector pts_velocity; // 当前帧相对前一帧特征点沿x,y方向的像素移动速度
vector ids; // 能够被跟踪到的特征点的id
vector track_cnt; // 当前帧forw_img中每个特征点被跟踪的时间次数
map cur_un_pts_map;
map prev_un_pts_map;
camodocal::CameraPtr m_camera; // 相机模型
double cur_time;
double prev_time;
static int n_id; // 用来作为特征点的id,每检测到一个新的特征点,就将n_id作为该特征点的id,然后n_id的值加1
上面是一些变量,每个变量都有自己的意义。在这里的话,就是forw表示当前,cur是forw的前一帧,prev是cur的前一帧,这三个的时间关系务必搞清楚。
class DepthRegister
{
public:
ros::NodeHandle n;
// publisher for visualization
ros::Publisher pub_depth_feature;
ros::Publisher pub_depth_image;
ros::Publisher pub_depth_cloud;
tf::TransformListener listener;
tf::StampedTransform transform;
const int num_bins = 360;
vector> pointsArray;
DepthRegister(ros::NodeHandle n_in): // 构造函数
n(n_in)
{
// messages for RVIZ visualization 发布出去的信息,用于RVIZ可视化用的
pub_depth_feature = n.advertise(PROJECT_NAME + "/vins/depth/depth_feature", 5);
pub_depth_image = n.advertise (PROJECT_NAME + "/vins/depth/depth_image", 5);
pub_depth_cloud = n.advertise(PROJECT_NAME + "/vins/depth/depth_cloud", 5);
pointsArray.resize(num_bins);
for (int i = 0; i < num_bins; ++i)
pointsArray[i].resize(num_bins);
}
// 核心!
sensor_msgs::ChannelFloat32 get_depth(const ros::Time& stamp_cur, const cv::Mat& imageCur,
const pcl::PointCloud::Ptr& depthCloud,
const camodocal::CameraPtr& camera_model ,
const vector& features_2d)
{
// 0.1 initialize depth for return
// 初始化需要返回的深度信息
sensor_msgs::ChannelFloat32 depth_of_point;
depth_of_point.name = "depth";
depth_of_point.values.resize(features_2d.size(), -1);
// 0.2 check if depthCloud available
// 检查点云图是否可用
if (depthCloud->size() == 0)
return depth_of_point;
// 0.3 look up transform at current image time
// 在当前图像时间查找tf变换
try{
listener.waitForTransform("vins_world", "vins_body_ros", stamp_cur, ros::Duration(0.01));
listener.lookupTransform("vins_world", "vins_body_ros", stamp_cur, transform);
}
catch (tf::TransformException ex)
{
ROS_ERROR("image no tf");
return depth_of_point;
}
double xCur, yCur, zCur, rollCur, pitchCur, yawCur;
xCur = transform.getOrigin().x();
yCur = transform.getOrigin().y();
zCur = transform.getOrigin().z();
tf::Matrix3x3 m(transform.getRotation());
m.getRPY(rollCur, pitchCur, yawCur);
Eigen::Affine3f transNow = pcl::getTransformation(xCur, yCur, zCur, rollCur, pitchCur, yawCur);
// 0.4 transform cloud from global frame to camera frame
// 将点云图从世界坐标系转换到当前相机坐标系
pcl::PointCloud::Ptr depth_cloud_local(new pcl::PointCloud());
pcl::transformPointCloud(*depthCloud, *depth_cloud_local, transNow.inverse());
// 0.5 project undistorted normalized (z) 2d features onto a unit sphere
// 将未失真的归一化2d特征投影到单位球体上
pcl::PointCloud::Ptr features_3d_sphere(new pcl::PointCloud());
for (int i = 0; i < (int)features_2d.size(); ++i)
{
// normalize 2d feature to a unit sphere
// 归一化2d特征到单位球体上
Eigen::Vector3f feature_cur(features_2d[i].x, features_2d[i].y, features_2d[i].z); // z always equal to 1
feature_cur.normalize();
// convert to ROS standard
// 转换为ROS的标准
PointType p;
p.x = feature_cur(2);
p.y = -feature_cur(0);
p.z = -feature_cur(1);
p.intensity = -1; // intensity will be used to save depth
// intensity会被用来保存深度信息
features_3d_sphere->push_back(p);
}
// 3. project depth cloud on a range image, filter points satcked in the same region
// 投影深度点云在距离图像上并过滤位于同一区域的点
float bin_res = 180.0 / (float)num_bins; // currently only cover the space in front of lidar (-90 ~ 90) 只能覆盖lidar前面的-90~90区域
cv::Mat rangeImage = cv::Mat(num_bins, num_bins, CV_32F, cv::Scalar::all(FLT_MAX));
for (int i = 0; i < (int)depth_cloud_local->size(); ++i)
{
PointType p = depth_cloud_local->points[i];
// filter points not in camera view
// 过滤不在相机视野中的点
if (p.x < 0 || abs(p.y / p.x) > 10 || abs(p.z / p.x) > 10)
continue;
// find row id in range image
// 在图像的范围中找到行号
float row_angle = atan2(p.z, sqrt(p.x * p.x + p.y * p.y)) * 180.0 / M_PI + 90.0; // degrees, bottom -> up, 0 -> 360
int row_id = round(row_angle / bin_res);
// find column id in range image
// 在图像的范围中找到列号
float col_angle = atan2(p.x, p.y) * 180.0 / M_PI; // degrees, left -> right, 0 -> 360
int col_id = round(col_angle / bin_res);
// id may be out of boundary
// id可能超出约束条件
if (row_id < 0 || row_id >= num_bins || col_id < 0 || col_id >= num_bins)
continue;
// only keep points that's closer
// 只保留较近的点
float dist = pointDistance(p); // 欧氏距离
if (dist < rangeImage.at(row_id, col_id))
{
rangeImage.at(row_id, col_id) = dist;
pointsArray[row_id][col_id] = p;
}
}
// 4. extract downsampled depth cloud from range image
// 从距离图像中提取下采样深度点云图
pcl::PointCloud::Ptr depth_cloud_local_filter2(new pcl::PointCloud());
for (int i = 0; i < num_bins; ++i)
{
for (int j = 0; j < num_bins; ++j)
{
if (rangeImage.at(i, j) != FLT_MAX)
depth_cloud_local_filter2->push_back(pointsArray[i][j]);
}
}
*depth_cloud_local = *depth_cloud_local_filter2;
publishCloud(&pub_depth_cloud, depth_cloud_local, stamp_cur, "vins_body_ros");
// 5. project depth cloud onto a unit sphere
// 将深度点云图投影到单位球体上
pcl::PointCloud::Ptr depth_cloud_unit_sphere(new pcl::PointCloud());
for (int i = 0; i < (int)depth_cloud_local->size(); ++i)
{
PointType p = depth_cloud_local->points[i];
float range = pointDistance(p);
p.x /= range;
p.y /= range;
p.z /= range;
p.intensity = range; // 对于这里的深度,感觉就是距离的意思,当然理解成深度也是可以的
depth_cloud_unit_sphere->push_back(p);
}
if (depth_cloud_unit_sphere->size() < 10)
return depth_of_point;
// 6. create a kd-tree using the spherical depth cloud
// 使用球形深度点云创建kd树
pcl::KdTreeFLANN::Ptr kdtree(new pcl::KdTreeFLANN());
kdtree->setInputCloud(depth_cloud_unit_sphere);
// 7. find the feature depth using kd-tree
// 使用kd-tree找到特征深度,并返回结果
vector pointSearchInd;
vector pointSearchSqDis;
float dist_sq_threshold = pow(sin(bin_res / 180.0 * M_PI) * 5.0, 2);
for (int i = 0; i < (int)features_3d_sphere->size(); ++i)
{
kdtree->nearestKSearch(features_3d_sphere->points[i], 3, pointSearchInd, pointSearchSqDis);
if (pointSearchInd.size() == 3 && pointSearchSqDis[2] < dist_sq_threshold)
{
float r1 = depth_cloud_unit_sphere->points[pointSearchInd[0]].intensity;
Eigen::Vector3f A(depth_cloud_unit_sphere->points[pointSearchInd[0]].x * r1,
depth_cloud_unit_sphere->points[pointSearchInd[0]].y * r1,
depth_cloud_unit_sphere->points[pointSearchInd[0]].z * r1);
float r2 = depth_cloud_unit_sphere->points[pointSearchInd[1]].intensity;
Eigen::Vector3f B(depth_cloud_unit_sphere->points[pointSearchInd[1]].x * r2,
depth_cloud_unit_sphere->points[pointSearchInd[1]].y * r2,
depth_cloud_unit_sphere->points[pointSearchInd[1]].z * r2);
float r3 = depth_cloud_unit_sphere->points[pointSearchInd[2]].intensity;
Eigen::Vector3f C(depth_cloud_unit_sphere->points[pointSearchInd[2]].x * r3,
depth_cloud_unit_sphere->points[pointSearchInd[2]].y * r3,
depth_cloud_unit_sphere->points[pointSearchInd[2]].z * r3);
// https://math.stackexchange.com/questions/100439/determine-where-a-vector-will-intersect-a-plane
Eigen::Vector3f V(features_3d_sphere->points[i].x,
features_3d_sphere->points[i].y,
features_3d_sphere->points[i].z);
Eigen::Vector3f N = (A - B).cross(B - C);
float s = (N(0) * A(0) + N(1) * A(1) + N(2) * A(2))
/ (N(0) * V(0) + N(1) * V(1) + N(2) * V(2));
float min_depth = min(r1, min(r2, r3));
float max_depth = max(r1, max(r2, r3));
if (max_depth - min_depth > 2 || s <= 0.5)
{
continue;
}
else if (s - max_depth > 0)
{
s = max_depth;
}
else if (s - min_depth < 0)
{
s = min_depth;
}
// convert feature into cartesian space if depth is available
// 如果深度可用,则将特征转换为笛卡尔空间
features_3d_sphere->points[i].x *= s;
features_3d_sphere->points[i].y *= s;
features_3d_sphere->points[i].z *= s;
// the obtained depth here is for unit sphere, VINS estimator needs depth for normalized feature (by value z), (lidar x = camera z)
// 这里获得的深度是针对单位球体的,VINS估计器需要归一化特征的深度(按z值)(激光雷达x = 相机z)
features_3d_sphere->points[i].intensity = features_3d_sphere->points[i].x;
}
}
// visualize features in cartesian 3d space (including the feature without depth (default 1))
// 可视化笛卡尔3d空间中的特征(包括没有深度的特征(默认1))
publishCloud(&pub_depth_feature, features_3d_sphere, stamp_cur, "vins_body_ros");
// update depth value for return
// 更新返回的深度值
for (int i = 0; i < (int)features_3d_sphere->size(); ++i)
{
if (features_3d_sphere->points[i].intensity > 3.0)
depth_of_point.values[i] = features_3d_sphere->points[i].intensity;
}
// visualization project points on image for visualization (it's slow!)
// 可视化项目点在图像上进行可视化(很慢)
if (pub_depth_image.getNumSubscribers() != 0)
{
vector points_2d;
vector points_distance;
for (int i = 0; i < (int)depth_cloud_local->size(); ++i)
{
// convert points from 3D to 2D
// 将点从3D转换为2D
Eigen::Vector3d p_3d(-depth_cloud_local->points[i].y,
-depth_cloud_local->points[i].z,
depth_cloud_local->points[i].x);
Eigen::Vector2d p_2d;
camera_model->spaceToPlane(p_3d, p_2d);
points_2d.push_back(cv::Point2f(p_2d(0), p_2d(1)));
points_distance.push_back(pointDistance(depth_cloud_local->points[i]));
}
cv::Mat showImage, circleImage;
cv::cvtColor(imageCur, showImage, cv::COLOR_GRAY2RGB);
circleImage = showImage.clone();
for (int i = 0; i < (int)points_2d.size(); ++i)
{
float r, g, b;
getColor(points_distance[i], 50.0, r, g, b);
cv::circle(circleImage, points_2d[i], 0, cv::Scalar(r, g, b), 5);
}
cv::addWeighted(showImage, 1.0, circleImage, 0.7, 0, showImage); // blend camera image and circle image 混合相机图像和圆形图像
cv_bridge::CvImage bridge;
bridge.image = showImage;
bridge.encoding = "rgb8";
sensor_msgs::Image::Ptr imageShowPointer = bridge.toImageMsg();
imageShowPointer->header.stamp = stamp_cur;
pub_depth_image.publish(imageShowPointer);
}
return depth_of_point;
}
void getColor(float p, float np, float&r, float&g, float&b)
{
// 这里rgb表示三个通道的颜色,最后乘255,得到颜色的值
float inc = 6.0 / np;
float x = p * inc;
r = 0.0f; g = 0.0f; b = 0.0f;
if ((0 <= x && x <= 1) || (5 <= x && x <= 6)) r = 1.0f;
else if (4 <= x && x <= 5) r = x - 4;
else if (1 <= x && x <= 2) r = 1.0f - (x - 1);
if (1 <= x && x <= 3) g = 1.0f;
else if (0 <= x && x <= 1) g = x - 0;
else if (3 <= x && x <= 4) g = 1.0f - (x - 3);
if (3 <= x && x <= 5) b = 1.0f;
else if (2 <= x && x <= 3) b = x - 2;
else if (5 <= x && x <= 6) b = 1.0f - (x - 5);
r *= 255.0;
g *= 255.0;
b *= 255.0;
}
};
这个的话就是DepthRegister类的具体内容。一开始定义了public的变量,用来rviz的可视化。然后下面是一个构造函数,用来可视化用的,这个没涉及到其他多余的操作,也不多讲。下面一个get_depth()的函数,这个非常重要,首先整理一下这个函数的流程。
get_depth()函数流程:
1、初始化需要返回的深度信息
2、检查点云图是否可用
3、在当前图像时间查找tf变换
4、将点云图从世界坐标系转换到当前相机坐标系
5、将未失真的归一化2d特征投影到单位球体上
6、投影深度点云在距离图像上并过滤位于同一区域的点
7、从距离图像中提取下采样深度点云图
8、将深度点云图投影到单位球体上
9、使用球形深度点云创建kd树
10、使用kd-tree找到特征深度,并放回结果
11、可视化笛卡尔三维空间中的特征
12、更新返回深度值
13、可视化项目点在图像上进行可视化
以上便是这个函数的流程,总共分了13步进行操作,猜测每一步代码比较简洁,因此就直接if,for这种直接上代码了,没有进行包装。一系列转换没啥好说的,然后转换矩阵要看懂,中间还有一步降采样的过程,也是为了减少不必要的计算了。然后创建kd树,这个数据结构的技巧,使得搜索更快。然后找到特征深度,里面r1、r2、r3这些公式的话,没太看懂。然后下面就是发布点云。这里的话,感觉没啥特别重要的,就是get_depth()这个要好好理解一下。
void getColor(float p, float np, float&r, float&g, float&b)
{
// 这里rgb表示三个通道的颜色,最后乘255,得到颜色的值
float inc = 6.0 / np;
float x = p * inc;
r = 0.0f; g = 0.0f; b = 0.0f;
if ((0 <= x && x <= 1) || (5 <= x && x <= 6)) r = 1.0f;
else if (4 <= x && x <= 5) r = x - 4;
else if (1 <= x && x <= 2) r = 1.0f - (x - 1);
if (1 <= x && x <= 3) g = 1.0f;
else if (0 <= x && x <= 1) g = x - 0;
else if (3 <= x && x <= 4) g = 1.0f - (x - 3);
if (3 <= x && x <= 5) b = 1.0f;
else if (2 <= x && x <= 3) b = x - 2;
else if (5 <= x && x <= 6) b = 1.0f - (x - 5);
r *= 255.0;
g *= 255.0;
b *= 255.0;
}
上面这个函数的话就是获取颜色,rgb代表三个通道,然后根据if语句来进行rgb三通道的赋值,最后乘255即可得到了最终值。
本篇结,感觉自己没学到位,所以感觉好像没啥疑问的地方。。。