俯卧撑你真做标准了嘛?敢不敢用Python来测试一下 (¬‿¬)

前言:

在此次冬奥会上,谷爱凌“一飞冲天”,苏翊鸣“一鸣惊人”,短道速滑梦之队“一往无前”……运动健儿们挑战极限、攀登顶峰的精神无一不让无数观众热血澎湃!

这些燃爆冬奥赛场的运动健儿们,洋溢着蓬勃的青春气息,书写着热血的人生传奇。

俯卧撑你真做标准了嘛?敢不敢用Python来测试一下 (¬‿¬)_第1张图片

每日一问,你有坚持健身锻炼吗?

你有用正确的方式健身嘛?

俯卧撑你真做标准了嘛?敢不敢用Python来测试一下 (¬‿¬)_第2张图片

正文:

在新加坡军队中,有一种测试叫做IPPT(个人身体素质测试)。这个测试的困难不在于它对体力的要求有多高,而在于用来计算做俯卧撑和仰卧起坐次数的电子机器。

和大多数人一样,我的俯卧撑动作总是不达标(根据机器的意见)。此外,由于缺乏参照机器标准的练习,许多NSMen(已经完成两年强制性服役的人)在IPPT测试中都难以取得好成绩。

因此,我决定使用mediapipe和OpenCV创建一个程序,跟踪我们的俯卧撑动作,确保我们每一个俯卧撑动作都达标。

俯卧撑你真做标准了嘛?敢不敢用Python来测试一下 (¬‿¬)_第3张图片

由mediapipe姿势模块检测到的肢体关节

import cv2
  import mediapipe as mp
  import math
  
  class poseDetector() :
      
      def __init__(self, mode=False, complexity=1, smooth_landmarks=True,
                   enable_segmentation=False, smooth_segmentation=True,
                   detectionCon=0.5, trackCon=0.5):
          
          self.mode = mode 
          self.complexity = complexity
          self.smooth_landmarks = smooth_landmarks
          self.enable_segmentation = enable_segmentation
          self.smooth_segmentation = smooth_segmentation
          self.detectionCon = detectionCon
          self.trackCon = trackCon
          
          self.mpDraw = mp.solutions.drawing_utils
          self.mpPose = mp.solutions.pose
          self.pose = self.mpPose.Pose(self.mode, self.complexity, self.smooth_landmarks,
                                       self.enable_segmentation, self.smooth_segmentation,
                                       self.detectionCon, self.trackCon)
          
          
      def findPose (self, img, draw=True):
          imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
          self.results = self.pose.process(imgRGB)
          
          if self.results.pose_landmarks:
              if draw:
                  self.mpDraw.draw_landmarks(img,self.results.pose_landmarks,
                                             self.mpPose.POSE_CONNECTIONS)
                  
          return img
      
      def findPosition(self, img, draw=True):
          self.lmList = []
          if self.results.pose_landmarks:
              for id, lm in enumerate(self.results.pose_landmarks.landmark):
                  #finding height, width of the image printed
                  h, w, c = img.shape
                  #Determining the pixels of the landmarks
                  cx, cy = int(lm.x * w), int(lm.y * h)
                  self.lmList.append([id, cx, cy])
                  if draw:
                      cv2.circle(img, (cx, cy), 5, (255,0,0), cv2.FILLED)
          return self.lmList
          
      def findAngle(self, img, p1, p2, p3, draw=True):   
          #Get the landmarks
          x1, y1 = self.lmList[p1][1:]
          x2, y2 = self.lmList[p2][1:]
          x3, y3 = self.lmList[p3][1:]
          
          #Calculate Angle
          angle = math.degrees(math.atan2(y3-y2, x3-x2) - 
                               math.atan2(y1-y2, x1-x2))
          if angle < 0:
              angle += 360
              if angle > 180:
                  angle = 360 - angle
          elif angle > 180:
              angle = 360 - angle
          # print(angle)
          
          #Draw
          if draw:
              cv2.line(img, (x1, y1), (x2, y2), (255,255,255), 3)
              cv2.line(img, (x3, y3), (x2, y2), (255,255,255), 3)
  
              
              cv2.circle(img, (x1, y1), 5, (0,0,255), cv2.FILLED)
              cv2.circle(img, (x1, y1), 15, (0,0,255), 2)
              cv2.circle(img, (x2, y2), 5, (0,0,255), cv2.FILLED)
              cv2.circle(img, (x2, y2), 15, (0,0,255), 2)
              cv2.circle(img, (x3, y3), 5, (0,0,255), cv2.FILLED)
              cv2.circle(img, (x3, y3), 15, (0,0,255), 2)
              
              cv2.putText(img, str(int(angle)), (x2-50, y2+50), 
                          cv2.FONT_HERSHEY_PLAIN, 2, (0,0,255), 2)
          return angle
          
  
  def main():
      detector = poseDetector()
      cap = cv2.VideoCapture(0)
      while cap.isOpened():
          ret, img = cap.read() #ret is just the return variable, not much in there that we will use. 
          if ret:    
              img = detector.findPose(img)
              cv2.imshow('Pose Detection', img)
          if cv2.waitKey(10) & 0xFF == ord('q'):
              break
              
      cap.release()
      cv2.destroyAllWindows()
      
  if __name__ == "__main__":
      main()

以上是这个程序的代码。

上面的代码来源于PoseModule.py,有以下几个功能:

  • 激活mediapipe的姿势检测模块。

  • 检测人体。

  • 根据模型找到人体上不同肢体关节的位置。(肢体显示在上面的图片中)。

  • 查找关节之间的角度(取决于你选择的关节)。对于我的俯卧撑程序,我选择找到肘部、肩部和臀部的角度,因为这些对俯卧撑动作的标准至关重要。

接下来是实际的俯卧撑计数的代码。我们使用PoseModule并确定一个俯卧撑合格与否的标准。


import cv2
  import mediapipe as mp
  import numpy as np
  import PoseModule as pm
  
  
  
  cap = cv2.VideoCapture(0)
  detector = pm.poseDetector()
  count = 0
  direction = 0
  form = 0
  feedback = "Fix Form"
  
  
  while cap.isOpened():
      ret, img = cap.read() #640 x 480
      #Determine dimensions of video - Help with creation of box in Line 43
      width  = cap.get(3)  # float `width`
      height = cap.get(4)  # float `height`
      # print(width, height)
      
      img = detector.findPose(img, False)
      lmList = detector.findPosition(img, False)
      # print(lmList)
      if len(lmList) != 0:
          elbow = detector.findAngle(img, 11, 13, 15)
          shoulder = detector.findAngle(img, 13, 11, 23)
          hip = detector.findAngle(img, 11, 23,25)
          
          #Percentage of success of pushup
          per = np.interp(elbow, (90, 160), (0, 100))
          
          #Bar to show Pushup progress
          bar = np.interp(elbow, (90, 160), (380, 50))
  
          #Check to ensure right form before starting the program
          if elbow > 160 and shoulder > 40 and hip > 160:
              form = 1
      
          #Check for full range of motion for the pushup
          if form == 1:
              if per == 0:
                  if elbow <= 90 and hip > 160:
                      feedback = "Up"
                      if direction == 0:
                          count += 0.5
                          direction = 1
                  else:
                      feedback = "Fix Form"
                      
              if per == 100:
                  if elbow > 160 and shoulder > 40 and hip > 160:
                      feedback = "Down"
                      if direction == 1:
                          count += 0.5
                          direction = 0
                  else:
                      feedback = "Fix Form"
                          # form = 0
                  
                      
      
          print(count)
          
          #Draw Bar
          if form == 1:
              cv2.rectangle(img, (580, 50), (600, 380), (0, 255, 0), 3)
              cv2.rectangle(img, (580, int(bar)), (600, 380), (0, 255, 0), cv2.FILLED)
              cv2.putText(img, f'{int(per)}%', (565, 430), cv2.FONT_HERSHEY_PLAIN, 2,
                          (255, 0, 0), 2)
  
  
          #Pushup counter
          cv2.rectangle(img, (0, 380), (100, 480), (0, 255, 0), cv2.FILLED)
          cv2.putText(img, str(int(count)), (25, 455), cv2.FONT_HERSHEY_PLAIN, 5,
                      (255, 0, 0), 5)
          
          #Feedback 
          cv2.rectangle(img, (500, 0), (640, 40), (255, 255, 255), cv2.FILLED)
          cv2.putText(img, feedback, (500, 40 ), cv2.FONT_HERSHEY_PLAIN, 2,
                      (0, 255, 0), 2)
  
          
      cv2.imshow('Pushup counter', img)
      if cv2.waitKey(10) & 0xFF == ord('q'):
          break
          
  cap.release()
  cv2.destroyAllWindows()

代码结果: 

有个需要注意的地方在第17-21行。确定从相机捕捉到的图像的分辨率,并在绘制俯卧撑计数的矩形时调整像素值,等等。(第68-82行)。

结尾:

好了现在我们就完成了—— 一个能确保动作标准的俯卧撑计数软件。没有完全俯下?不算数! 膝盖放在了地上?不算数!

最后完整代码已经打包整理好了,有需要的小伙伴,可以点击这行字体,要么私信小编!

小编提示适当健身更安全!

你可能感兴趣的:(Python,程序员,运动,计算机视觉,深度学习,opencv)