- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 日记2021-3-8
思考z
今天开课第一天,对于今天的目标完成的还不错早上起床赖了一下,下午去图书馆呆了2个多小时,晚自习看了概率论与统计学,单词:talent天赋,才能,thick厚的,obstacleto对……障碍,introduce介绍,传入,thin瘦的,稀薄的,thorough彻底的,完全的,occurredto想到,invent发明,throat喉咙,ofcourse当然,thunder雷,雷声,tide潮汐,o
- PDF和CDF
薛定谔的猫_大雪
概率论
在概率论和统计学中,PDF和CDF是两种描述随机变量分布的重要函数:ProbabilityDensityFunction(PDF):概率密度函数是用来描述连续随机变量可能取值的概率分布的函数。对于一个连续型随机变量X,其PDFf(x)定义为在某个取值x处的概率密度,即X在该值附近出现的概率密度。PDF的积分可以得到概率,即在某个区间内随机变量出现的概率。CumulativeDensityFunct
- Python 数学建模——方差分析
Desire.984
Python数学建模数学建模python概率论
文章目录前言单因素方差分析原理核心代码双因素方差分析数学模型分析依据典型代码前言 方差分析也是概率论中非常重要的内容,有时数学建模需要用到。方差分析是干什么的?如果说假设检验用于分析两个总体之间的均值μ1,μ2\mu_1,\mu_2μ1,μ2是否存在显著的差别,那么方差分析就是分析两个以上总体之间的均值是否存在显著的差别。单因素方差分析用途:已知一个量AAA可能会影响XXX,AAA的不同取值可能
- 数据分析面试【概率论与统计学】总结之-----统计学常见面试题整理
天阑的芋头
#数据分析—统计学知识数据分析统计学数据分析面试
阅读之前看这里:博主是正在学习数据分析的一员,博客记录的是在学习过程中一些总结,也希望和大家一起进步,在记录之时,未免存在很多疏漏和不全,如有问题,还请私聊博主指正。博客地址:天阑之蓝的博客,学习过程中不免有困难和迷茫,希望大家都能在这学习的过程中肯定自己,超越自己,最终创造自己。目录1.用简洁的话语阐述随机变量的含义2.划分连续型随机变量和离散型随机变量的依据3.常见的分布函数/概率密度函数,以
- 感悟文是很容易写的
林天歌
生活感悟是很容易写的,只要你生活中稍稍关注一下周围在发生什么,随便什么事情都可以,甚至编一件事都可以,然后为之赋予一个意义。举例子的话,比如说我可以写我的概率论老师,每节课三小时,两小时都是在讲课堂无关的事情,都是在讲一些她以为的人生道理,却不知道因为她讲得太多,加上她使用互联网的能力不足,她讲得已经完全不能触动到学生的神经,反倒还促进了一些学生的逃课。这就是典型的以己度人,她以为她在分享自己认为
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 机械学习—零基础学习日志(概率论总笔记5)
学长小陈来帮你
学习笔记概率论算法深度学习机器学习
引言——“黑天鹅”要获得95%以上置信度的统计结果,需要被统计的对象出现上千次,但是如果整个样本只有几千字,被统计的对象能出现几次就不错了。这样得到的数据可能和真实的概率相差很远。怎么避免“黑天鹅”?古德-图灵折扣估计法在词语统计中,有点词语虽然是出现0次,但是实际的出现概率并不是永远不可能的零。那需要把一些概率转移给到这些词语。古德的做法实际上就是把出现1次的单词的总量,给了出现0次的,出现2次
- 人生苦短我用Python pandas文件格式转换
程序喵D
人生苦短我用Pythonpythonpandas
人生苦短我用Pythonpandas文件格式转换前言示例1excel与csv互转常用格式的方法FlatfileExcelJSONXML示例2常用格式转换简要需求依赖export方法main方法附其它格式的方法HTMLPicklingClipboardLatexHDFStore:PyTables(HDF5)FeatherParquetORCSASSPSSSQLGoogleBigQuerySTATA前
- Python 数学建模——假设检验
Desire.984
Python数学建模python数学建模概率论
文章目录前言参数假设检验单个总体均值的假设检验σ\sigmaσ已知σ\sigmaσ未知两个总体均值的假设检验参考代码非参数假设检验分布拟合检验——卡方检验KS检验(Kolmogorov-Smirnov检验)Wilcoxon检验Wilcoxon符号秩检验Wilcoxon秩和检验前言 假设检验是概率论中相当重要的内容。一般是先提出一个原假设H0H_0H0和一个对立的备择假设H1H_1H1,通过数学方
- 非理工科院校怎么打好数学建模比赛 | 南川笔记
南川笔记
Proposition1非理工科院校最好不要打数学建模比赛。虽说“一次建模,终身受益”,但毕竟数学建模既要数学理论的支撑(不仅仅是大学里的微积分、线性代数和概率论与统计,更多的是基于微积分的常偏微分方程、基于线性代数的运筹学和基于概率论与统计的统计分析内容),还要编程的支撑(不是常规的C语言或者Java程序,也不是这几年很火的Python编程,而是基于数值运算的Matlab和基于统计的R),这在一
- Python的图形化界面编程
iteye_20668
Pythonpython
2017.2.14好久没有写代码了,感觉过一个年弄的什么也没有干成,好像看了下c++,突然发现现在来看C++,要简单了好多,并且指针也没有那么难了,然后就是看了下机器学习,感觉有点小难,现在发现好多都涉及到高数,概率论和线性代数的知识,想想当初把这些学的是一塌糊涂。然后上次和胡杨大大聊天的时候,他说好多东西都是在实践中去学习的。好了,继续我的Python吧,Python的图形化界面编程。impor
- 黄丽红日精进503/506
做自己小太阳
手机What?微信用的比较少了但是自己浏览器看视频还是看了好久Why?从哔哩哔哩转为浏览器了How?控制,控制不住就卸载培训What?今日份上午基本废了把案例分析笔记做的差不多了错题本也整理的差不多接下来就是看执业医师书*spss操作Why系统学习才有意义接下来复习案例分析抓选择题和数据分析How?明日(spss*选择题)行5.21.操作技能学习2.样品监测案例分析3.环境卫生案例分析4.…5.S
- 回调函数
HAPPYers
首先注册一个回调函数PsSetCreateProcessNotifyRoutine函数原型NTSTATUSPsSetCreateProcessNotifyRoutine(PCREATE_PROCESS_NOTIFY_ROUTINENotifyRoutine,BOOLEANRemove);我们在注册中写入NTSTATUSstatus=PsSetCreateProcessNotifyRoutine(M
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- 【概率论】理解贝叶斯(Bayes)公式:为什么疾病检测呈阳性,得这种病的概率却不高?
seh_sjlj
概率论概率论学习数学经验分享
先说结论:因为假阳性的人数相比于真阳性太多了。具体是怎么回事呢?咱们慢慢分析。文章目录一、贝叶斯公式二、典例分析三、贝叶斯公式的本质思考(摘自教材)一、贝叶斯公式定理1(贝叶斯公式)设有事件A,BA,BA,B,P(A)>0P(A)>0P(A)>0,P(B)>0P(B)>0P(B)>0,则P(B∣A)=P(B)P(A∣B)P(A)P(B|A)=\frac{P(B)P(A|B)}{P(A)}P(B∣A
- 愚者才悲观|每日复盘D32
_李子昂
我是李子昂,一个热爱生活、积极向上的“人生梦想家”。爱阅读、记录生活,这是我的第三十二天复盘❤2019.12.1232/3651.感恩创造的不可思议的今天早起一件事:打卡✔(每天比昨天早起两分钟)早读任务:第一课,课文两段✔马原第一章大题背诵✘古诗词一首✘三只青蛙:阅读一小时✔概率论前三章✘图片发自App2.今日小确幸感恩YCX送我的奶茶,紫薯和冬天很配❤感恩早上的挣扎顺利的早起了两分钟,明天加油
- 【晨间日记】 2020年9月23日
语瞳SAMA
2020年9月23日天气:小雨【90天践行目标】(108/120)①5:30早起②22:30早睡③写晨间日记【昨日践行】①5:41起床②22:29入睡③晨间日记已达成【今日青蛙】①完成概率论和离散数学作业②午间冥想③洗衣服*昨日三只青蛙已达成【反思日志】①早晨听这门Java课,真的有种“虽然是使用中文教学,但是上起来却和外语课一样”的感觉,好多未知的术语糅杂在一起,整堂课听着就跟猜谜似的,太离谱了
- 2.1概率统计的世界
极客探索者
量化交易概率论
欢迎来到概率统计的世界!在量化交易中,概率统计是至关重要的工具。通过理解概率,我们可以用数学的方法来描述市场行为,预测未来走势,并制定交易策略。让我们一起从基础概念开始,逐步深入,揭开概率统计的神秘面纱。1.1概率论的基本概念与应用概率是用来描述某个事件发生可能性的数值。例如,丢一枚硬币,正面朝上的概率是50%。这个概率可以用数学公式表示为:在量化交易中,我们常常需要计算各种事件的概率,例如股票价
- 数学建模—SPSS学习笔记
shellier
数学建模—SPSS学习笔记学习笔记数学建模
1、描述统计(描述一组数据的集中和离散情况)SPSS操作分析—描述统计—描述度量标准:度量(定距变量IntervalData)【可以分类(=和≠),可以排序(>和和30),其样本均值都近似服从正态分布。条件二:样本数据是连续的且数据之间的差异不能太大(不能包含离群点或异常值)。条件三:每组样本之间相互独立。条件四:皮尔逊相关系数有效的前提是两组数据(两个对象)之间呈线性关系。2)散点图检验使用EX
- Matlab实现多传感器信息融合(D-S证据推论)
冬天都会过去
D-S证据理论是对贝叶斯推理方法推广,主要是利用概率论中贝叶斯条件概率来进行的,贝叶斯条件概率需要知道先验概率。而D-S证据理论不需要知道先验概率,能够很好地表示“不确定”,被广泛用来处理不确定数据。(对来自多传感器数据的融合处理)适用于:信息融合、专家系统、情报分析、法律案件分析、多属性决策分析1、D-S证据理论知识介绍(1)四大定义基本概率分配、信任函数、似然函数、信任区间其中,函数m为识别框
- 概率论中的卷积公式
Ctrl+CV九段手
概率论卷积公式卷积神经网络概率论概率论与数理统计笔记经验分享
目录简介卷积公式的推导与应用实际例子卷积公式在多维情况下的推导和应用是什么?多维卷积的推导多维卷积的应用延伸拓展如何使用卷积公式解决实际问题,例如信号处理中的噪声消除?在统计学中,卷积公式是如何应用于样本量估计和假设检验的?卷积公式在量子力学中的应用有哪些例子?如何证明卷积公式对于独立随机变量之和的概率密度函数的重要性?简介在概率论中,卷积公式是用于计算两个独立随机变量之和的概率密度函数的重要工具
- 亦菲喊你来学机器学习(14) --贝叶斯算法
方世恩
机器学习算法人工智能pythonscikit-learn
文章目录贝叶斯一、贝叶斯定理二、贝叶斯算法的核心概念三、贝叶斯算法的优点与局限优点:局限:四、构建模型训练模型测试模型总结贝叶斯贝叶斯算法(Bayesianalgorithm)是一种基于贝叶斯定理的机器学习方法,主要用于估计模型参数和进行概率推断。以下是对贝叶斯算法的详细解析:一、贝叶斯定理贝叶斯定理是概率论中的一个基本定理,它描述了条件概率之间的关系。该定理的数学表达式为:P(A∣B)=P(B)
- AI大模型副业变现之路,有技术就有收入!
AI大模型-王哥
人工智能AI大模型大模型大模型学习大模型教程大模型入门
在当今时代,AI大模型的应用越来越广泛,利用这些技术开展副业赚钱已成为可能。以下是一份详细的指南,帮助你了解需要学习的内容以及如何操作。一、需要学习的内容基础知识储备(1)数学知识:线性代数、概率论与数理统计、微积分等,这些是理解AI算法的基础。(2)编程技能:掌握Python编程语言,因为Python在AI领域有丰富的库和框架支持。(3)机器学习原理:了解常见的机器学习算法,如线性回归、决策树、
- 小琳 AI 课堂:机器学习
小琳ai
小琳AI课堂人工智能机器学习
嘿,朋友们!欢迎来到小琳AI课堂机器学习:如同让计算机拥有超能力的神奇魔法机器学习,这门超酷的多领域交叉学科,居然融合了概率论、统计学、逼近论、凸分析、算法复杂度理论等等好多学科。它的关键就在于让计算机凭借数据和算法去学习,然后像个小超人似的,拥有预测和决策的超强能力!从技术实现的层面来讲,主要分成监督学习、无监督学习和强化学习这三大类别监督学习:在有标记的数据集上展开学习。打个比方哈,根据已知的
- 计算机保研/考研面试题——数学篇
安晴晚风
计算机保研/考研专业课面试考研面试
笔者在2023年参加了部分985和华五计算机夏令营和预推免面试,遇到了不少数学问题,以下是笔者的一些总结,从高数、线代、概率论三个方面讨论。(对保研er和考研er均适用,如需要其他学科的问题请关注我~)相关文章:计算机保研/考研面试题——数据结构与算法篇-CSDN博客计算机保研/考研面试题——操作系统篇-CSDN博客计算机保研/考研面试题——计算机网络篇-CSDN博客计算机保研/考研面试题——编程
- 中心极限定理
不倒的不倒翁先森
概率论
中心极限定理(CentralLimitTheorem,CLT)是概率论中的一个重要定理,它说明了在某些条件下,独立随机变量的和(或平均值)趋向于正态分布的性质。具体来说,中心极限定理可以描述为:定理表述:设(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,…,Xn)是一组相互独立、服从相同分布的随机变量,其数学期望为μ\muμ,方差为σ2\sigma^2σ2(有限且不为零
- 2019-03-20记录及学习计划更正
逆风飞翔的鸟
今天早晨早早的就坐上了返回学校的高铁,自己复习的进度稍慢了一些,不过没关系,这几天再追回来,最近发现虽然自己数学的做题能力有所提升,但是熟练程度还差很多,所以接下来高等数学要多做题,线性代数基础已经复习完毕,不能丢下,每天要做一定量的练习来保持住自己的水平。概率论与数理统计自己感觉有些困难,需要从课本开始认真的复习。关于英语我已经用百词斩背了有400左右的单词了,但是不是很扎实,所以自己要提升自己
- 深度学习如何入门?
科学的N次方
深度学习
入门深度学习需要系统性的学习和实践经验积累,以下是一份详细的入门指南,包含了关键的学习步骤和资源:预备知识:•编程基础:熟悉Python编程语言,它是深度学习领域最常用的编程语言。确保掌握变量、条件语句、循环、函数等基本概念,并学习如何使用Python处理数据和文件操作。•数学基础:理解线性代数(矩阵运算、向量空间等)、微积分(导数、梯度求解等)、概率论与统计学(期望、方差、概率分布、最大似然估计
- 2022-05-14
败者食尘_40a0
本文结构速览:一、SQL题二、机器学习&概率论三、开放性问题01SQL题面试真题:现有一张用户签到表(user_sign_d),标记用户每日是否签到,表结构如下sign_date:日期user_id:用户IDif_sign:当日是否签到,1表示签到,0表示未签到问题①:请计算截止到当前每个用户已经连续签到的天数(输出表仅包含当天签到的所有用户,计算其连续签到的天数)输出表结构如下:user_id:
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理