mlp神经网络和bp神经网络,bp神经网络lm算法原理

MATLAB中训练LM算法的BP神经网络

1.初始权值不一样,如果一样,每次训练结果是相同的 2.是 3.在train之前修改权值,IW,LW,b,使之相同 4.取多次实验的均值 一点浅见,仅供参考 训练误差是否降到一定范围内,比如1e-3, 将训练样本回代结果如何, 训练样本进行了预处理,比如归一化,而测试样本未进行同样的处理 这样的归一化似有问题,我也认为“测试数据的归一化也用训练数据归一化时得出的min和max值”, 请参考这个帖子 测试数据带入训练好的神经网络误差当然不会达到1e-5,这是预测啊。

但将训练数据带入误差必然是1e-5,算法终止就是因为达到这个误差才终止,这个误差是由训练数据的输入、输出以及神经网络的权值、激活函数共同决定的,神经网络训练完后,权值、激活函数定了,同样的数据再代入神经网络,误差会不等于1e-5?

第二个问题:不可能每个值都达到1e-5,1e-5是MSE(mean square error),它们的平方和除以总数再开方,mse(E)必为1e-5 另外,LM算法虽然训练最快,但是预测精度一般不好,不如gdm,gdx。

谷歌人工智能写作项目:神经网络伪原创

关于神经网络LM训练算法的一些问题

IS-LM-BP模型中,LM比BP陡峭的经济含义是什么?

BP曲线比LM曲线更陡峭,就说明资本流动对国内利率变化不敏感,资本流动程度较低。

产品市场上所决定的国民收入又会影响货币需求,从而影响利率,这又是产品市场对货币市场的影响,可见,产品市场和货币市场是相互联系的,相互作用的,而收入和利率也只有在这种相互系,相互作用中才能决定。

描述和分析这两个市场相互联系的理论结构,就称为IS—LM。

该模型要求同时达到下面的两个条件:(1) I(i)=S(Y) IS,InvestmentSaving(2)M/P=L1(i)+L2(Y) 即LM,Liquidity preference - Money Supply其中,I为投资,S为储蓄,M为名义货币量,P为物价水平,M/P为实际货币量,Y为总产出,i为利率。

两条曲线交点处表示产品市场和货币市场同时达到均衡。IS-LM模型是宏观经济分析的一个重要工具,是描述产品市场和货币市场之间相互联系的理论结构。

反向传播算法(BP算法)是一种监督学习算法,常被用来训练多层感知机。BP算法由两个环节(激励传播、权重更新)反复循环迭代,直到网络对输入的响应大到预定的目标范围为止。

激励传播包含:(向前传播阶段)将训练输入送入网络以获得激励响应啊;(反向传播阶段)将激励响应同训练输入对应的目标输入求差(t-a),从而获得隐层和输出层的响应误差。

权重更新包括:首先将输入激励和响应误差相乘(sm*(a(m-1))),从而获得权重的梯度;然后,将这个梯度乘上一个比例(_*sm*(a(m-1)))并去反后加到权重上。

核心思想:用雅可比矩阵(易计算)代替Hessian矩阵的计算,使得优化效率得到提升。LMBP是加速收敛BP算法的其中一种标准的数值优化方法。优点:由于需要求解矩阵的逆,所以在每次迭代中需要更多的计算。

但是既便如此,在网络参数个数适中的情况下,LMBP算法依然是最快的神经网络训练算法。缺点:存储需求大。

所需存储近似Hessian矩阵JTJ(n*n的矩阵,其中n是神经网络中参数(权值与偏置值)的个数)。因此当参数的数量非常大时,LMBP算法是不实用的。

前馈神经网络、BP神经网络、卷积神经网络的区别与联系

一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。

2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。

二、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。

2、BP神经网络:(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)分类:把输入向量所定义的合适方式进行分类;(4)数据压缩:减少输出向量维数以便于传输或存储。

3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。

三、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。

网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。

扩展资料:1、BP神经网络优劣势BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。

网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。

①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。②容易陷入局部极小值。③网络层数、神经元个数的选择没有相应的理论指导。④网络推广能力有限。

2、人工神经网络的特点和优越性,主要表现在以下三个方面①具有自学习功能。

例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。

预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。③具有高速寻找优化解的能力。

寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

参考资料:百度百科—前馈神经网络百度百科—BP神经网络百度百科—卷积神经网络百度百科—人工神经网络。

BP人工神经网络

人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。

神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。

岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。

工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。

BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。

网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。

正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。

BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。

但在实际操作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。(2)BP网络模型其计算速度较慢、无法表达预测量与其相关参数之间亲疏关系。

(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。

(4)BP人工神经网络系统具有非线性、智能的特点。

较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。

因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。

PNN神经网络,BP神经网络,Elman神经网络,ANN神经网络,几种神经网络中哪个容错能力最强?

神经网络原理及应用

神经网络原理及应用1. 什么是神经网络?神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

人类的神经网络2. 神经网络基础知识构成:大量简单的基础元件——神经元相互连接工作原理:模拟生物的神经处理信息的方式功能:进行信息的并行处理和非线性转化特点:比较轻松地实现非线性映射过程,具有大规模的计算能力神经网络的本质:神经网络的本质就是利用计算机语言模拟人类大脑做决定的过程。

3. 生物神经元结构4. 神经元结构模型xj为输入信号,θi为阈值,wij表示与神经元连接的权值,yi表示输出值判断xjwij是否大于阈值θi5. 什么是阈值?

临界值。神经网络是模仿大脑的神经元,当外界刺激达到一定的阈值时,神经元才会受刺激,影响下一个神经元。

6. 几种代表性的网络模型单层前向神经网络——线性网络阶跃网络多层前向神经网络(反推学习规则即BP神经网络)Elman网络、Hopfield网络、双向联想记忆网络、自组织竞争网络等等7. 神经网络能干什么?

运用这些网络模型可实现函数逼近、数据聚类、模式分类、优化计算等功能。因此,神经网络广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。

虽然神经网络的应用很广,但是在具体的使用过程中到底应当选择哪种网络结构比较合适是值得考虑的。这就需要我们对各种神经网络结构有一个较全面的认识。8. 神经网络应用。

 

你可能感兴趣的:(神经网络,算法,人工智能)