泰勒公式的应用
求 ln ( 1.02 ) \ln(1.02) ln(1.02)的近似值,使得误差不超过 1 0 − 5 . 10^{-5}. 10−5.
解:
ln ( 1 + x ) \qquad \ln(1+x) ln(1+x)带拉格朗日余项的 n n n阶麦克劳林公式为
ln ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ + ( − 1 ) n − 1 n x n + ( − 1 ) n ( ξ + 1 ) − n n + 1 x n + 1 ( ξ ∈ ( 0 , x ) ) \ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots+\dfrac{(-1)^{n-1}}{n}x^n+\dfrac{(-1)^n(\xi+1)^{-n}}{n+1}x^{n+1} \qquad (\xi\in(0,x)) ln(1+x)=x−2x2+3x3−⋯+n(−1)n−1xn+n+1(−1)n(ξ+1)−nxn+1(ξ∈(0,x))
\qquad 取 x = 0.02 x=0.02 x=0.02得
ln ( 1.02 ) = 0.02 − 0.0 2 2 2 + 0.0 2 3 3 − ⋯ + ( − 1 ) n − 1 n 0.0 2 n + ( − 1 ) n ( ξ + 1 ) − n n + 1 × 0.0 2 n + 1 ( ξ ∈ ( 0 , 0.02 ) ) \ln(1.02)=0.02-\dfrac{0.02^2}{2}+\dfrac{0.02^3}{3}-\cdots+\dfrac{(-1)^{n-1}}{n}0.02^n+\dfrac{(-1)^n(\xi+1)^{-n}}{n+1}\times0.02^{n+1} \qquad (\xi\in(0,0.02)) ln(1.02)=0.02−20.022+30.023−⋯+n(−1)n−10.02n+n+1(−1)n(ξ+1)−n×0.02n+1(ξ∈(0,0.02))
\qquad 若取 n = 2 n=2 n=2,则
( ξ + 1 ) − 2 3 × 0.0 2 3 < 8 3 × 1 0 − 6 < 1 0 − 5 \dfrac{(\xi+1)^{-2}}{3}\times0.02^3<\dfrac{8}{3}\times10^{-6}<10^{-5} 3(ξ+1)−2×0.023<38×10−6<10−5
\qquad 所以
ln ( 1.02 ) ≈ 0.02 + 0.0 2 2 2 ≈ 0.0198 \ln(1.02)\approx 0.02+\dfrac{0.02^2}{2}\approx0.0198 ln(1.02)≈0.02+20.022≈0.0198
证明不等式
∣ ln x y x − y − 1 y ∣ ≤ 1 2 ∣ x − y ∣ ( x , y ≥ 1 , x ≠ y ) |\dfrac{\ln \frac xy}{x-y}-\dfrac 1y|\leq \dfrac 12|x-y| \qquad (x,y\geq 1,x\neq y) ∣x−ylnyx−y1∣≤21∣x−y∣(x,y≥1,x=y)
证明:
\qquad 将函数 ln x \ln x lnx在点 y y y处展开为带拉格朗日余项的 1 1 1阶泰勒公式
ln x = ln y + ( x − y ) 1 y − 1 2 ( x − y ) 2 1 ξ 2 \ln x=\ln y+(x-y)\dfrac 1y-\dfrac 12(x-y)^2\dfrac{1}{\xi^2} lnx=lny+(x−y)y1−21(x−y)2ξ21
\qquad 其中 ξ \xi ξ介于 x , y x,y x,y之间,整理得
ln x − ln y − ( x − y ) 1 y = − 1 2 ( x − y ) 2 1 ξ 2 \ln x-\ln y-(x-y)\dfrac 1y=-\dfrac 12(x-y)^2\dfrac{1}{\xi^2} lnx−lny−(x−y)y1=−21(x−y)2ξ21
\qquad 因为 ξ \xi ξ介于 x , y x,y x,y之间,且 x , y ≥ 1 x,y\geq 1 x,y≥1,所以 ξ ≥ 1 \xi\geq 1 ξ≥1,由此可得
∣ ln x − ln y x − y − 1 y ∣ = 1 2 ∣ ( x − y ) 1 ξ 2 ∣ ≤ 1 2 ∣ x − y ∣ |\dfrac{\ln x-\ln y}{x-y}-\dfrac 1y|=\dfrac 12|(x-y)\dfrac{1}{\xi^2}|\leq\dfrac 12|x-y| ∣x−ylnx−lny−y1∣=21∣(x−y)ξ21∣≤21∣x−y∣
得证
∣ ln x y x − y − 1 y ∣ ≤ 1 2 ∣ x − y ∣ |\dfrac{\ln \frac xy}{x-y}-\dfrac 1y|\leq \dfrac 12|x-y| ∣x−ylnyx−y1∣≤21∣x−y∣
设函数 y = f ( x ) y=f(x) y=f(x)在 [ 0 , 1 ] [0,1] [0,1]上有连续的三阶导数,且 f ( 0 ) = f ′ ( 1 2 ) = 0 , f ( 1 ) = 1 2 . f(0)=f'(\dfrac 12)=0,f(1)=\dfrac 12. f(0)=f′(21)=0,f(1)=21.
求证:存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1),使得 f ′ ′ ′ ( ξ ) = 12. f'''(\xi)=12. f′′′(ξ)=12.
证明:
\qquad 利用 f f f的带拉格朗日余项的 2 2 2阶泰勒公式,取 x 0 = 1 2 x_0=\dfrac 12 x0=21,可得
f ( 1 ) = f ( 1 2 ) + 1 2 f ′ ( 1 2 ) + 1 8 f ′ ′ ( 1 2 ) + 1 48 f ′ ′ ′ ( ξ 1 ) ( ξ 1 ∈ ( 1 2 , 1 ) ) f ( 0 ) = f ( 1 2 ) − 1 2 f ′ ( 1 2 ) + 1 8 f ′ ′ ( 1 2 ) − 1 48 f ′ ′ ′ ( ξ 2 ) ( ξ 2 ∈ ( 0 , 1 2 ) ) f(1)=f(\dfrac 12)+\dfrac 12f'(\dfrac 12)+\dfrac 18f''(\dfrac 12)+\dfrac{1}{48}f'''(\xi_1) \qquad (\xi_1\in(\dfrac 12,1)) \\ \qquad \\ f(0)=f(\dfrac 12)-\dfrac 12f'(\dfrac 12)+\dfrac 18f''(\dfrac 12)-\dfrac{1}{48}f'''(\xi _2)\qquad (\xi_2\in(0,\dfrac 12)) f(1)=f(21)+21f′(21)+81f′′(21)+481f′′′(ξ1)(ξ1∈(21,1))f(0)=f(21)−21f′(21)+81f′′(21)−481f′′′(ξ2)(ξ2∈(0,21))
\qquad 两式相减得
1 2 − 0 = 0 + 1 48 f ′ ′ ′ ( ξ 1 ) + 1 48 f ′ ′ ′ ( ξ 2 ) \dfrac 12-0=0+\dfrac{1}{48}f'''(\xi_1)+\dfrac{1}{48}f'''(\xi_2) 21−0=0+481f′′′(ξ1)+481f′′′(ξ2)
整理得
f ′ ′ ′ ( ξ 1 ) + f ′ ′ ′ ( ξ 2 ) = 24 f'''(\xi_1)+f'''(\xi_2)=24 f′′′(ξ1)+f′′′(ξ2)=24
∵ f ′ ′ ′ ( x ) \qquad \because f'''(x) ∵f′′′(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,且 f ′ ′ ′ ( ξ 1 ) + f ′ ′ ′ ( ξ 2 ) = 24 f'''(\xi_1)+f'''(\xi_2)=24 f′′′(ξ1)+f′′′(ξ2)=24
∴ \qquad \therefore ∴根据连续函数的介值定理可得存在 ξ \xi ξ介于 ξ 1 \xi_1 ξ1和 ξ 2 \xi_2 ξ2之间,使得 f ′ ′ ′ ( ξ ) = 12 f'''(\xi)=12 f′′′(ξ)=12
∵ ξ 1 \qquad \because \xi_1 ∵ξ1和 ξ 2 \xi_2 ξ2都在 ( 0 , 1 ) (0,1) (0,1)上
∴ \qquad \therefore ∴存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1),使得 f ′ ′ ′ ( ξ ) = 12 f'''(\xi)=12 f′′′(ξ)=12