泰勒公式求极限习题

前置知识

泰勒公式求极限

习题

lim ⁡ x → 0 + e sin ⁡ 2 x − cos ⁡ ( 2 x ) − 2 x x 2 \lim\limits_{x\rightarrow0^+}\dfrac{e^{\sin^2x}-\cos(2\sqrt x)-2x}{x^2} x0+limx2esin2xcos(2x )2x

解:
sin ⁡ x = x + o ( x 2 ) \qquad \sin x=x+o(x^2) sinx=x+o(x2)

e u 2 = 1 + u 2 + o ( u 2 ) ( u → 0 ) \qquad e^{u^2}=1+u^2+o(u^2) \qquad (u\rightarrow0) eu2=1+u2+o(u2)(u0)

\qquad x → 0 x\rightarrow0 x0时, u = sin ⁡ x ∼ x u=\sin x\sim x u=sinxx,所以

e sin ⁡ 2 x = 1 + [ x + o ( x 2 ) ] 2 + o ( x 2 ) = 1 + x 2 + o ( x 2 ) \qquad e^{\sin^2x}=1+[x+o(x^2)]^2+o(x^2)=1+x^2+o(x^2) esin2x=1+[x+o(x2)]2+o(x2)=1+x2+o(x2)

\qquad 因为

cos ⁡ ( 2 x ) = 1 − 1 2 ! ( 2 x ) 2 + 1 4 ! ( 2 x ) 4 + o ( x 2 ) = 1 − 2 x + 2 3 x 2 + o ( x 2 ) \qquad \cos (2\sqrt x)=1-\dfrac{1}{2!}(2\sqrt x)^2+\dfrac{1}{4!}(2\sqrt x)^4+o(x^2)=1-2x+\dfrac 23x^2+o(x^2) cos(2x )=12!1(2x )2+4!1(2x )4+o(x2)=12x+32x2+o(x2)

\qquad 所以

\qquad 原式 = lim ⁡ x → 0 + [ 1 + x 2 + o ( x 2 ) ] − [ 1 − 2 x + 2 3 x 2 + o ( x 2 ) ] − 2 x x 2 = lim ⁡ x → 0 + 1 3 x 2 + o ( x 2 ) x 2 = 1 3 =\lim\limits_{x\rightarrow0^+}\dfrac{[1+x^2+o(x^2)]-[1-2x+\frac 23x^2+o(x^2)]-2x}{x^2}=\lim\limits_{x\rightarrow0^+}\dfrac{\frac 13x^2+o(x^2)}{x^2}=\dfrac 13 =x0+limx2[1+x2+o(x2)][12x+32x2+o(x2)]2x=x0+limx231x2+o(x2)=31

你可能感兴趣的:(数学,数学)