参考 Python的一个报错——OSError: [Errno 22] Invalid argument - 云+社区 - 腾讯云
tf.ConfigProto()主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算,设置性质如下:
allow_soft_placement
bool allow_soft_placement
cluster_def
ClusterDef cluster_def
device_count
repeated DeviceCountEntry device_count
device_filters
repeated string device_filters
experimental
Experimental experimental
gpu_options
GPUOptions gpu_options
graph_options
GraphOptions graph_options
inter_op_parallelism_threads
int32 inter_op_parallelism_threads
intra_op_parallelism_threads
int32 intra_op_parallelism_threads
isolate_session_state
bool isolate_session_state
log_device_placement
bool log_device_placement
operation_timeout_in_ms
int64 operation_timeout_in_ms
placement_period
int32 placement_period
rpc_options
RPCOptions rpc_options
session_inter_op_thread_pool
repeated ThreadPoolOptionProto session_inter_op_thread_pool
use_per_session_threads
bool use_per_session_threads
例:
import tensorflow as tf
session_config = tf.ConfigProto(
log_device_placement=True,
inter_op_parallelism_threads=0,
intra_op_parallelism_threads=0,
allow_soft_placement=True)
sess = tf.Session(config=session_config)
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2,3], name='b')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3,2], name='b')
c = tf.matmul(a,b)
print(sess.run(c))
Output:
------------
[[22. 28.]
[49. 64.]]
------------
具体解释:
log_device_placement=True
inter_op_parallelism_threads=0
intra_op_parallelism_threads=0
allow_soft_placement=True
其他选项:
当使用GPU时候,Tensorflow运行自动慢慢达到最大GPU的内存:
session_config.gpu_options.allow_growth = True
当使用GPU时,设置GPU内存使用最大比例:
session_config.gpu_options.per_process_gpu_memory_fraction = 0.4
是否能够使用GPU进行运算:
tf.test.is_built_with_cuda()
另外的处理方法:
import tensorflow as tf
sess = tf.Session()
with tf.device('/cpu:0'):
a = tf.constant([1.0, 3.0, 5.0], shape=[1, 3])
b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1])
with tf.device('/gpu:0'):
c = tf.matmul(a, b)
c = tf.reshape(c, [-1])
with tf.device('/gpu:0'):
d = tf.matmul(b, a)
flat_d = tf.reshape(d, [-1])
combined = tf.multiply(c, flat_d)
print(sess.run(combined))