相机自动对焦 OpenCV 图像清晰度评价

原文:https://blog.csdn.net/dcrmg/article/details/53543341

OpenCV 图像清晰度评价(相机自动对焦)

版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/dcrmg/article/details/53543341

相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上。这时候物体的成像比较清晰,图像细节信息丰富。

相机自动对焦的过程,其实就是对成像清晰度评价的过程,对焦不准确,拍摄出来的图像清晰度低,视觉效果模糊,如果是在工业检测测量领域,对焦不准导致的后果可能是致命的;对焦准确的图像清晰度较高,层次鲜明,对比度高。

 

图像清晰度评价算法有很多种,在空域中,主要思路是考察图像的领域对比度,即相邻像素间的灰度特征的梯度差;在频域中,主要思路是考察图像的频率分量,对焦清晰的图像高频分量较多,对焦模糊的图像低频分量较多。

这里实现3种清晰度评价方法,分别是Tenengrad梯度方法、Laplacian梯度方法和方差方法。

Tenengrad梯度方法

Tenengrad梯度方法利用Sobel算子分别计算水平和垂直方向的梯度,同一场景下梯度值越高,图像越清晰。以下是具体实现,这里衡量的指标是经过Sobel算子处理后的图像的平均灰度值,值越大,代表图像越清晰。

 

 

 
  1. #include

  2. #include

  3.  
  4. using namespace std;

  5. using namespace cv;

  6.  
  7. int main()

  8. {

  9. Mat imageSource = imread("2.jpg");

  10. Mat imageGrey;

  11.  
  12. cvtColor(imageSource, imageGrey, CV_RGB2GRAY);

  13. Mat imageSobel;

  14. Sobel(imageGrey, imageSobel, CV_16U, 1, 1);

  15.  
  16. //图像的平均灰度

  17. double meanValue = 0.0;

  18. meanValue = mean(imageSobel)[0];

  19.  
  20. //double to string

  21. stringstream meanValueStream;

  22. string meanValueString;

  23. meanValueStream << meanValue;

  24. meanValueStream >> meanValueString;

  25. meanValueString = "Articulation(Sobel Method): " + meanValueString;

  26. putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);

  27. imshow("Articulation", imageSource);

  28. waitKey();

  29. }

 

 

使用三张测试图片模拟不同对焦。第一张最清晰,得分最高,第二三张越来越模糊,得分依次降低。

 

 

 

 

Laplacian梯度方法:

 

Laplacian梯度是另一种求图像梯度的方法,在上例的OpenCV代码中直接替换Sobel算子即可。

 

 

 
  1. #include

  2. #include

  3.  
  4. using namespace std;

  5. using namespace cv;

  6.  
  7. int main()

  8. {

  9. Mat imageSource = imread("1.jpg");

  10. Mat imageGrey;

  11.  
  12. cvtColor(imageSource, imageGrey, CV_RGB2GRAY);

  13. Mat imageSobel;

  14.  
  15. Laplacian(imageGrey, imageSobel, CV_16U);

  16. //Sobel(imageGrey, imageSobel, CV_16U, 1, 1);

  17.  
  18. //图像的平均灰度

  19. double meanValue = 0.0;

  20. meanValue = mean(imageSobel)[0];

  21.  
  22. //double to string

  23. stringstream meanValueStream;

  24. string meanValueString;

  25. meanValueStream << meanValue;

  26. meanValueStream >> meanValueString;

  27. meanValueString = "Articulation(Laplacian Method): " + meanValueString;

  28. putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);

  29. imshow("Articulation", imageSource);

  30. waitKey();

  31. }

 

用同样的三张测试图片测试,结果一致,随着对焦模糊得分降低:

 

 

 

 

方差方法:

 

方差是概率论中用来考察一组离散数据和其期望(即数据的均值)之间的离散(偏离)成都的度量方法。方差较大,表示这一组数据之间的偏差就较大,组内的数据有的较大,有的较小,分布不均衡;方差较小,表示这一组数据之间的偏差较小,组内的数据之间分布平均,大小相近。

 

对焦清晰的图像相比对焦模糊的图像,它的数据之间的灰度差异应该更大,即它的方差应该较大,可以通过图像灰度数据的方差来衡量图像的清晰度,方差越大,表示清晰度越好

 

 

 
  1. #include

  2. #include

  3.  
  4. using namespace std;

  5. using namespace cv;

  6.  
  7. int main()

  8. {

  9. Mat imageSource = imread("2.jpg");

  10. Mat imageGrey;

  11.  
  12. cvtColor(imageSource, imageGrey, CV_RGB2GRAY);

  13. Mat meanValueImage;

  14. Mat meanStdValueImage;

  15.  
  16. //求灰度图像的标准差

  17. meanStdDev(imageGrey, meanValueImage, meanStdValueImage);

  18. double meanValue = 0.0;

  19. meanValue = meanStdValueImage.at(0, 0);

  20.  
  21. //double to string

  22. stringstream meanValueStream;

  23. string meanValueString;

  24. meanValueStream << meanValue*meanValue;

  25. meanValueStream >> meanValueString;

  26. meanValueString = "Articulation(Variance Method): " + meanValueString;

  27.  
  28. putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);

  29. imshow("Articulation", imageSource);

  30. waitKey();

  31. }

 

 

方差数值随着清晰度的降低逐渐降低:

 

 

 

在工业应用中,最清晰的对焦拍摄出来的图像不一定是最好的,有可能出现摩尔纹(水波纹)现象,一般需要在最清晰对焦位置附件做一个微调。

你可能感兴趣的:(视觉相关)