假设有图像数据8x8,像素值范围0~14共15个灰度等级,统计得到各个等级出现次数及直方图如右侧所示,每个紫色的长条叫BIN
上述直方图概念是基于图像像素值,其实对图像梯度、每个像素的角度、等一切图像的属性值,我们都可以建立直方图。这个才是直方图的概念真正意义,不过是基于图像像素灰度直方图是最常见的。
直方图最常见的几个属性:
- dims 表示维度,对灰度图像来说只有一个通道值dims=1
- bins 表示在维度中子区域大小划分,bins=256,划分为256个级别
- range 表示值得范围,灰度值范围为[0~255]之间
split(// 把多通道图像分为多个单通道图像
const Mat &src, //输入图像
Mat* mvbegin)// 输出的通道图像数组
calcHist(
const Mat* images,//输入图像指针
int images,// 图像数目
const int* channels,// 通道数
InputArray mask,// 输入mask,可选,不用
OutputArray hist,//输出的直方图数据
int dims,// 维数
const int* histsize,// 直方图级数
const float* ranges,// 值域范围
bool uniform,// true by default
bool accumulate// false by defaut
)
#include
#include
#include
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src = imread("D:/vcprojects/images/test.png");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
char INPUT_T[] = "input image";
char OUTPUT_T[] = "histogram demo";
namedWindow(INPUT_T, CV_WINDOW_AUTOSIZE);
namedWindow(OUTPUT_T, CV_WINDOW_AUTOSIZE);
imshow(INPUT_T, src);
// 分通道显示
vector bgr_planes;
split(src, bgr_planes);
//imshow("single channel demo", bgr_planes[0]);
// 计算直方图
int histSize = 256;
float range[] = { 0, 256 };
const float *histRanges = { range };
Mat b_hist, g_hist, r_hist;
calcHist(&bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRanges, true, false);
calcHist(&bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRanges, true, false);
calcHist(&bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRanges, true, false);
// 归一化
int hist_h = 400;
int hist_w = 512;
int bin_w = hist_w / histSize;
Mat histImage(hist_w, hist_h, CV_8UC3, Scalar(0, 0, 0));
normalize(b_hist, b_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
normalize(g_hist, g_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
normalize(r_hist, r_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
// render histogram chart
for (int i = 1; i < histSize; i++) {
line(histImage, Point((i - 1)*bin_w, hist_h - cvRound(b_hist.at(i - 1))),
Point((i)*bin_w, hist_h - cvRound(b_hist.at(i))), Scalar(255, 0, 0), 2, LINE_AA);
line(histImage, Point((i - 1)*bin_w, hist_h - cvRound(g_hist.at(i - 1))),
Point((i)*bin_w, hist_h - cvRound(g_hist.at(i))), Scalar(0, 255, 0), 2, LINE_AA);
line(histImage, Point((i - 1)*bin_w, hist_h - cvRound(r_hist.at(i - 1))),
Point((i)*bin_w, hist_h - cvRound(r_hist.at(i))), Scalar(0, 0, 255), 2, LINE_AA);
}
imshow(OUTPUT_T, histImage);
waitKey(0);
return 0;
}