import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
# getcwd 获得当前的工作地址的绝对路径
from os.path import join
sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
def convert(size, box): # size[w,h] box[xmin, xmax, ymin. ymax]
dw = 1./(size[0]) # size[0] 为宽
dh = 1./(size[1]) # size[1] 为高
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(year, image_id):
# 打开VOCdevkit/VOC2012/Annotations/2008_000008.xml
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
# 结果写入VOCdevkit/VOC2012/labels/2008_000008.xml
out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
# 解析XML
tree = ET.parse(in_file)
# 获得根节点
root = tree.getroot()
# 找到size 值
size = root.find('size')
# 找到宽
w = int(size.find('width').text)
# 找到 boundingbox 的高
h = int(size.find('height').text)
# 找到"object" 的根节点
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls) # 获取标签名字的编号
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
# 转化为yolov3 的数据格式
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)): # VOCdevkit/VOC2012/labels 如果不存在
os.makedirs('VOCdevkit/VOC%s/labels/'%(year)) # 创建文件夹
# 打开 VOCdevkit/VOC2012/ImageSets/Main/train.txt 读取为列表 ["2008_000008","2008_000019", ...]
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
# 写入2012_train.txt
list_file = open('%s_%s.txt' % (year, image_set), 'w')
for image_id in image_ids:
# 将path/to/VOCdevkit/VOC2012/JPEGImages/2008_000008.jpg 写入 2012_train.txt
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
# 转换为yolov3 的格式
convert_annotation(year, image_id)
list_file.close()
1.得到train.txt 、val.txt 、test.txt
1.1 打开 VOCdevkit/VOC2012/ImageSets/Main/train.txt 读取为列表 ["2008_000008","2008_000019", ...]
1.2 将path/to/VOCdevkit/VOC2012/JPEGImages/2008_000008.jpg 写入 2012_train.txt 2012_val.txt
在这三个文件夹中分别得到对应数据集的绝对路径
2.得到标注文件
2.1 打开图片对应的原始标注文件 VOCdevkit/VOC2012/Annotations/2008_000008.xml
2.2 转换为yolo 的数据格式
2.3 写入VOCdevkit/VOC2012/labels/2008_000008.xml中