CP计算 每一个类 各点到聚类中心的平均距离
CP越低意味着类内聚类距离越近
缺点:没有考虑类间效果
SP计算 各聚类中心两两之间平均距离
SP越高意味类间聚类距离越远
缺点:没有考虑类内效果
DB计算 任意两类别的类内距离平均距离(CP)之和除以两聚类中心距离 求最大值
DB越小意味着类内距离越小 同时类间距离越大
缺点:因使用欧式距离 所以对于环状分布 聚类评测很差
DVI计算 任意两个簇元素的最短距离(类间)除以任意簇中的最大距离(类内)
DVI越大意味着类间距离越大 同时类内距离越小
缺点:对离散点的聚类测评很高、对环状分布测评效果差
CA计算 聚类正确的百分比
CA越大证明聚类效果越好
其中C表示实际类别信息,K表示聚类结果,a表示在C与K中都是同类别的元素对数,b表示在C与K中都是不同类别的元素对数
其中表示数据集中可以组成的对数,RI取值范围为[0,1],值越大意味着聚类结果与真实情况越吻合。
RI越大表示聚类效果准确性越高 同时每个类内的纯度越高
为了实现“在聚类结果随机产生的情况下,指标应该接近零”,调整兰德系数(Adjusted rand index)被提出,它具有更高的区分度:
ARI取值范围为[−1,1],值越大意味着聚类结果与真实情况越吻合。从广义的角度来讲,ARI衡量的是两个数据分布的吻合程度。
标准化互聚类信息都是用熵做分母将MI值调整到0与1之间,一个比较多见的实现是下面所示:
1.Fahad A, Alshatri N, Tari Z, et al. A survey of clustering algorithms for big data: Taxonomy and empirical analysis[J]. IEEE transactions on emerging topics in computing, 2014, 2(3): 267-279.
2.评价指标-简书
3.DSSP聚类评价指标
4.聚类的一些评价手段
5.聚类评价指标 Rand Index,RI,Recall,Precision,F1
6.Evaluation of clustering
7.wiki