- 使用AutoKeras2.0的AutoModel进行结构化数据回归预测
1、FirstofAll:ReadTheFuckingSourceCodeimportautokerasasakimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportmean_squared_error#生成数据集np.random.seed(42)x=np.random.r
- python2.7.13安装keras记录
呜哇哈哈嗝~
Python基础kerastensorflowpython
keras给出的版本大多对应的是python3.x版本,但有时一些项目需要用到python2.x的环境,版本找起来很麻烦。故喇宝准备写此篇来记录以及总结一下自己的安装过程(也为了防止下次自己又要重新装的时候各种百度不到)!python版本2.7.13condacreate--namepython27python=2.7.13在anaconda中使用命令新建一个名为python27的虚拟环境,新环境
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- Keras环境复现代码(三)
yanyiche_
keras深度学习人工智能
DQN雅达利Breakout强化学习实验要求明确实验目的:学习和实现深度Q学习(DQN),这是一种结合了Q学习和深度神经网络的强化学习算法,用于解决复杂的决策问题。清楚实验原理:1、深度Q学习(DeepQ-Network)将卷积神经网络与Q学习结合,解决高维视觉输入的强化学习问题:2、经验回放:将状态转换存储到缓冲区,打破数据相关性,稳定训练。3、目标网络:定期更新目标Q值计算网络,减少训练中的目
- Keras环境复现代码(二)
yanyiche_
Keras机器学习人工智能
PPOCartPole控制算法实践实验要求明确实验目的:学习和实现PPO算法,这是一种改进的策略梯度方法,通过限制策略更新的幅度来提高训练的稳定性。清楚实验原理:PPO算法是一种基于策略梯度的强化学习算法,它旨在解决传统策略梯度方法(如REINFORCE算法)在训练过程中可能出现的策略更新不稳定问题。PPO算法通过引入一种新的策略更新机制,限制每次更新的幅度,从而提高训练的稳定性和效率。PPO算法
- 深刻解析如何解决在pycharm中导入tensorflow的子模块keras时的报错(导入语法正确)
lovingf
pycharmpythontensorflowkeras
只是导入时报错,但代码仍可以运行1.导入方式正确,但pycharm将其标红2.通过查看tensorflow的官方文件,猜测可能是python版本不适配python需为python3.6-3.9,而我的为python3.113.配置python3.9的环境(详情可看我的另一篇文章),但依然报错4.经过仔细分析,觉得可能是pycharm与tensorflow的适配问题,pycharm无法寻找到tens
- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- python打卡训练营Day41
珂宝_
python打卡训练营python
importnumpyasnpfromtensorflowimportkerasfromtensorflow.kerasimportlayers#加载和预处理数据(x_train,y_train),(x_test,y_test)=keras.datasets.mnist.load_data()x_train=x_train.reshape(-1,28,28,1).astype("float32")
- LSTM价格预测模型:基于技术指标与市场情绪数据
pk_xz123456
仿真模型算法深度学习lstm人工智能rnn深度学习开发语言目标检测神经网络
LSTM价格预测模型:基于技术指标与市场情绪数据一、模型架构设计importnumpyasnpimportpandasaspdimporttensorflowastffromsklearn.preprocessingimportStandardScalerfromtensorflow.keras.modelsimportSequentialfrom
- 【深度学习-Day 21】框架入门:神经网络模型构建核心指南 (Keras & PyTorch)
吴师兄大模型
深度学习入门到精通深度学习神经网络keras人工智能pythonpytorchLLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Python实现简单的深度学习实践
master_chenchengg
pythonpythonPythonpython开发IT
Python实现简单的深度学习实践Python:通往深度学习世界的钥匙动手搭建你的第一个神经网络模型从零开始,用Python解析MNIST手写数字识别超越基础:使用Keras快速构建卷积神经网络实战演练:训练一个简单的图像分类器Python:通往深度学习世界的钥匙在当今这个数据驱动的时代,Python无疑成为了打开深度学习大门的金钥匙。它不仅语法简洁、易于上手,而且拥有强大的社区支持和丰富的库资源
- 初识 Tensorflow.js【Plan - June - Week 3】
kuiini
Plan人工智能tensorflow人工智能
一、TensorFlow.jsTensorFlow.js是TensorFlow的JavaScript实现,支持在浏览器或Node.js环境中训练和部署机器学习模型。1、TensorFlow.js能做什么?在浏览器中训练机器学习模型加载并使用已有的模型(TensorFlowSavedModel、Keras模型、TensorFlowHub等)在Node.js环境中训练和部署模型将模型从PythonTe
- Keras深度学习框架第十四讲:使用TensorFlow进行多GPU分布式训练
MUKAMO
AIPython应用Keras框架深度学习kerastensorflow
使用TensorFlow进行多GPU分布式训练1、绪论1.1使用TensorFlow进行多GPU分布式训练概念TensorFlow是一个流行的开源机器学习框架,它支持多GPU分布式训练,允许开发者利用多个GPU并行处理数据和模型参数,从而加速训练过程。多GPU分布式训练在深度学习领域尤其重要,因为它可以极大地提高模型的训练速度和效率。在使用TensorFlow进行多GPU分布式训练时,通常需要遵循
- 重新编译一个不支持 AVX、AVX2的 TensorFlow 1.15的python3.7的安装包
babytiger
tensorflow人工智能python
事情是这样的,以前写过一个图像识别程序,是在python3.7centos7上实现的,是要求cpu支持avx指令的,但是最近在一台电脑上部署时发现这台电脑不支持avx的,参才之前的文章在不支持avx指令集的cpu上部署tensorflow及keras._6133指令集-CSDN博客但是安装包没有linux下的python版本,得自己编译生成了。这里面问题也不小。我的系统是ubuntu2404,下载
- AI人工智能深度学习入门指南:从基础到实践_副本
AI大模型应用实战
C人工智能深度学习ai
AI人工智能深度学习入门指南:从基础到实践关键词:人工智能、机器学习、深度学习、神经网络、梯度下降、反向传播、实战案例摘要:本文是为零基础或初级学习者打造的深度学习入门指南。我们将从“人工智能-机器学习-深度学习”的关系讲起,用“教机器人认猫”的故事串联核心概念,结合生活比喻(如“多层蛋糕”解释神经网络)、数学公式(如梯度下降的“下山游戏”)和Python实战代码(用Keras实现手写数字识别),
- Keras.preprocessing.image
kakak_
CV
ImageDataGeneratorImageDataGenerator是keras.preprocessing.image模块中的图片生成器,同时也可以在batch中对数据进行增强,扩充数据集大小,增强模型的泛化能力。比如进行旋转,变形,归一化等等。fromkeras.preprocessing.imageimportImageDataGeneratorimage_datagen=ImageDa
- 【深度学习】嘿马深度学习笔记第1篇:深度学习基本概要【附代码文档】
某miao
深度学习笔记人工智能
图片无法加载本教程的知识点为:深度学习介绍1.1深度学习与机器学习的区别TensorFlow介绍2.4张量2.4.1张量(Tensor)2.4.1.1张量的类型TensorFlow介绍1.2神经网络基础1.2.1Logistic回归1.2.1.1Logistic回归TensorFlow介绍总结每日作业神经网络与tf.keras1.3神经网络基础神经网络与tf.keras1.3Tensorflow实
- 如何在Keras中使用Lambda层构建、保存和加载模型
t0_54program
stablediffusion个人开发
在深度学习领域,Keras是一个广受欢迎且易于使用的构建深度学习模型的库。它支持多种常见的层类型,如输入层、全连接层、卷积层、转置卷积层、重塑层、归一化层、随机失活层、展平层以及激活层等。然而,有时我们可能需要对数据执行现有层无法实现的操作,这时Lambda层就派上用场了。本文将详细介绍如何在Keras中使用Lambda层来构建、保存和加载模型。一、使用Keras的函数式API构建模型在Keras
- 深度学习入门:Python搭建简单神经网络模型
缑宇澄
python
在人工智能浪潮中,深度学习凭借强大的特征提取与模式识别能力成为核心技术,而神经网络则是深度学习的基石。从图像识别到自然语言处理,神经网络以独特的结构和学习机制,让计算机能够模拟人类大脑处理复杂信息的过程。本文将带领你从基础理论出发,使用Python和Keras库搭建一个简单的神经网络模型,开启深度学习的探索之旅。一、神经网络基础理论1.1神经元与网络结构神经网络的基本单元是人工神经元(又称节点或单
- 超实用!零基础打造微信表情识别小程序,源码+数据集全公开
Uyker
小程序人工智能前端
一、技术原理与核心模型基础表情分类使用FER(FacialExpressionRecognition)模型,支持7种基础表情识别:愤怒、厌恶、恐惧、快乐、悲伤、惊讶、中性。技术栈:Python+TensorFlow/Keras+OpenCV,模型基于卷积神经网络(CNN),输入48x48灰度图,输出概率分布。情绪强度量化(进阶)三维情绪模型:通过愉悦度(Valence)、唤醒度(Arousal)、
- 外汇交易预测平台:综合经济指标与情绪分析的自适应模型应用
电竞小潘安
本文还有配套的精品资源,点击获取简介:本文介绍了一个名为"Forex_Technical_Analysis_Platform"的外汇技术分析平台,它采用自适应模型,融合经济指标和情绪分析来预测汇率。平台集成了Python、AWS、TensorFlow、Keras、Scrapy和JupyterNotebook等多种现代数据分析工具和技术,以提供高效的决策支持系统。自适应模型能够自我调整,学习历史数据
- 第23篇:AI技术实战:基于深度学习的图像识别与分类
CarlowZJ
AI+Python人工智能深度学习分类
目录一、深度学习在图像识别中的应用(一)卷积神经网络(CNN)的关键组件(二)预训练模型迁移学习二、代码示例(一)使用TensorFlow和Keras实现CNN进行图像分类1.数据准备与预处理2.构建CNN模型3.模型训练与评估(二)使用预训练模型进行迁移学习1.使用ResNet-50预训练模型2.微调预训练模型三、应用场景(一)安防监控(二)医疗影像诊断(三)智能零售(四)工业制造四、注意事项(
- python第三方库
SherlyYang_
Pythonpython
深度学习框架:Tensorflow、Theano包装深度学习框架的库:Keras(tf和Theano)、tflearn(tf)机器学习库:sklearn、Gensim
- 使用PyGAD训练Keras模型:从入门到实践
t0_54program
大数据与人工智能keras人工智能深度学习个人开发
在机器学习领域,如何高效地训练模型是一个关键问题。PyGAD作为一个开源的Python库,为我们提供了利用遗传算法来训练机器学习算法的有力工具,特别是在训练Keras模型方面,展现出独特的优势。一、PyGAD库简介PyGAD允许开发者构建遗传算法,并用于训练各类机器学习算法。它提供了丰富的参数,能针对不同类型的问题定制遗传算法。比如在解决一些复杂的优化问题时,我们可以通过调整这些参数,使遗传算法更
- python第31天打卡
zdy1263574688
python打卡python开发语言
importnumpyasnpfromtensorflowimportkerasfromtensorflow.kerasimportlayers,optimizers,utils,datasets#数据加载和预处理函数defload_and_preprocess_data():(x_train,y_train),(x_test,y_test)=datasets.mnist.load_data()#
- 在keras中调用Sequential报错:TypeError: ‘google._upb._message.MessageMeta‘ object is not iterable...如何解决?
bug菌¹
全栈Bug调优(实战版)kerasneo4j人工智能Sequential报错
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!备注:部分问题/疑难杂症搜集于互联网。全文目录:问题描述解决方案(请知悉:如下方案不保证一定适配你的问题)问题分析解决方法总结文末福利,等你来拿!✨️WhoamI?问题描
- Keras实战---猫狗大战
YLTommi
神经网络机器学习深度学习人工智能随机森林
第1关:数据集的加载importosimportnumpyasnpimportcv2defget_train_data(data_path):images=[]onehot=np.zeros((500,2))#获取目录下的所有文件名filenames=os.listdir(data_path)#遍历文件名fori,filenameinenumerate(filenames):#读取图片img=cv
- Keras模块介绍
听风二里
pythonkeras人工智能深度学习
Keras是一个高级神经网络API,用Python编写,能够在TensorFlow、Theano或CNTK后端上运行。它旨在实现快速实验,能够简单、快速地构建和训练深度学习模型。Keras具有用户友好的API,支持多种网络层,如卷积层、循环层、全连接层等,并提供了丰富的优化器和损失函数选择。此外,Keras还提供了方便的模型保存和加载功能,使得模型训练更加高效。应用和发展趋势随着深度学习技术的广泛
- 【头歌实验】Keras机器翻译实战
纸飞机飞呀飞
头歌实验学习笔记keras机器翻译人工智能
【头歌实验】Keras机器翻译实战第1关:加载原始数据编程要求根据提示,在右侧编辑器补充代码,实现load_data函数,该函数需要加载path所代表的文件中的数据,并将文件中所有的内容按\n分割,转换成一个列表后返回。代码#coding:utf8importosdefload_data(path):'''读取原始语料数据:parampath:文件路径:return:句子列表,如['heisabo
- 探索 AutoKeras:简化深度学习模型开发的利器
可乐泡枸杞·
深度学习人工智能
探索AutoKeras:简化深度学习模型开发的利器随着人工智能和深度学习技术的不断发展,越来越多的应用场景需要利用深度学习模型来解决复杂问题。然而,构建和优化深度学习模型通常需要丰富的专业知识和大量的时间投入。为了简化这一过程,AutoKeras作为一个开源的自动化机器学习(AutoML)库,提供了自动化神经架构搜索(NAS)和超参数调优功能,使得开发者可以更轻松地构建高性能的深度学习模型。在这篇
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数