drn&drn_seg代码

问题:
在这里插入图片描述

drn文件

import pdb
#pdb是 ThePythonDebugger 的缩写,为Python标准库的一个模块。pdb模块规定了一个Python程序交互式源代码调试器,支持在设置断点(包括条件断点),也支持源码级单步调试,支持栈帧监视,支持源代码列出,支持任意栈帧上下文的随机Python代码估值。它还支持事后调试(post-mortem debugging),并且能在程序控制下被调用。

import torch 
import torch.nn as nn #class torch.nn.Module与class torch.nn.Parameter() https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-nn/
import math
import torch.utils.model_zoo as model_zoo
# 在给定URL上加载Torch序列化对象。https://pytorch-cn.readthedocs.io/zh/latest/package_references/model_zoo/
torch.backends.cudnn.benchmark = True
# 与GPU 相关的 flag,提速https://mp.weixin.qq.com/s?src=11×tamp=1606096921&ver=2723&signature=jfMPYOAtEseWFpFchs1vKCGBrrOtigSR6fyj1lQz0MK4BeT3sFRxvQXi2Y5*EGXiS*v-V1n39jNzzWYtt93OzrK8c*TxDQBc0OLbVOQtXCJ8zsWA*l3LmTbBE5skkCVj&new=1
BatchNorm = nn.BatchNorm2d
#对小批量(mini-batch)3d数据组成的4d输入进行批标准化(Batch Normalization)操作https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-nn/#class-torchnnbatchnorm2dnum_features-eps1e-05-momentum01-affinetruesource

# __all__ = ['DRN', 'drn26', 'drn42', 'drn58']


webroot = 'https://tigress-web.princeton.edu/~fy/drn/models/'

model_urls = {
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'drn-c-26': webroot + 'drn_c_26-ddedf421.pth',
    'drn-c-42': webroot + 'drn_c_42-9d336e8c.pth',
    'drn-c-58': webroot + 'drn_c_58-0a53a92c.pth',
    'drn-d-22': webroot + 'drn_d_22-4bd2f8ea.pth',
    'drn-d-38': webroot + 'drn_d_38-eebb45f0.pth',
    'drn-d-54': webroot + 'drn_d_54-0e0534ff.pth',
    'drn-d-105': webroot + 'drn_d_105-12b40979.pth'
}


def conv3x3(in_planes, out_planes, stride=1, padding=1, dilation=1):
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=padding, bias=False, dilation=dilation)#二维卷积层, 输入的尺度是(N, C_in,H,W),输出尺度(N,C_out,H_out,W_out)的计算方式:


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None,
                 dilation=(1, 1), residual=True):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride,
                             padding=dilation[0], dilation=dilation[0])
        self.bn1 = BatchNorm(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes,
                             padding=dilation[1], dilation=dilation[1])
        self.bn2 = BatchNorm(planes)
        self.downsample = downsample
        self.stride = stride
        self.residual = residual

    def forward(self, x)://前向传播:将上一层的输出作为下一层的输入,并计算下一层的输出,一直到运算到输出层为止。
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        if self.residual:
            out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None,
                 dilation=(1, 1), residual=True):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = BatchNorm(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=dilation[1], bias=False,
                               dilation=dilation[1])
        self.bn2 = BatchNorm(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = BatchNorm(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class DRN(nn.Module):

    def __init__(self, block, layers, num_classes=1000,
                 channels=(16, 32, 64, 128, 256, 512, 512, 512),
                 out_map=False, out_middle=False, pool_size=28, arch='D'):
        super(DRN, self).__init__()
        self.inplanes = channels[0]
        self.out_map = out_map
        self.out_dim = channels[-1]
        self.out_middle = out_middle
        self.arch = arch

        if arch == 'C':
            self.conv1 = nn.Conv2d(3, channels[0], kernel_size=7, stride=1,
                                   padding=3, bias=False)
            self.bn1 = BatchNorm(channels[0])
            self.relu = nn.ReLU(inplace=True)

            self.layer1 = self._make_layer(
                BasicBlock, channels[0], layers[0], stride=1)
            self.layer2 = self._make_layer(
                BasicBlock, channels[1], layers[1], stride=2)
        elif arch == 'D':
            self.layer0 = nn.Sequential(
                nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3,
                          bias=False),
                BatchNorm(channels[0]),
                nn.ReLU(inplace=True)
            )

            self.layer1 = self._make_conv_layers(
                channels[0], layers[0], stride=1)
            self.layer2 = self._make_conv_layers(
                channels[1], layers[1], stride=2)

        self.layer3 = self._make_layer(block, channels[2], layers[2], stride=2)
        self.layer4 = self._make_layer(block, channels[3], layers[3], stride=2)
        self.layer5 = self._make_layer(block, channels[4], layers[4],
                                       dilation=2, new_level=False)
        self.layer6 = None if layers[5] == 0 else \
            self._make_layer(block, channels[5], layers[5], dilation=4,
                             new_level=False)

        if arch == 'C':
            self.layer7 = None if layers[6] == 0 else \
                self._make_layer(BasicBlock, channels[6], layers[6], dilation=2,
                                 new_level=False, residual=False)
            self.layer8 = None if layers[7] == 0 else \
                self._make_layer(BasicBlock, channels[7], layers[7], dilation=1,
                                 new_level=False, residual=False)
        elif arch == 'D':
            self.layer7 = None if layers[6] == 0 else \
                self._make_conv_layers(channels[6], layers[6], dilation=2)
            self.layer8 = None if layers[7] == 0 else \
                self._make_conv_layers(channels[7], layers[7], dilation=1)

        if num_classes > 0:
            self.avgpool = nn.AvgPool2d(pool_size)
            self.fc = nn.Conv2d(self.out_dim, num_classes, kernel_size=1,
                                stride=1, padding=0, bias=True)
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, BatchNorm):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1,
                    new_level=True, residual=True):
        assert dilation == 1 or dilation % 2 == 0
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm(planes * block.expansion),
            )

        layers = list()
        layers.append(block(
            self.inplanes, planes, stride, downsample,
            dilation=(1, 1) if dilation == 1 else (
                dilation // 2 if new_level else dilation, dilation),
            residual=residual))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, residual=residual,
                                dilation=(dilation, dilation)))

        return nn.Sequential(*layers)

    def _make_conv_layers(self, channels, convs, stride=1, dilation=1):
        modules = []
        for i in range(convs):
            modules.extend([
                nn.Conv2d(self.inplanes, channels, kernel_size=3,
                          stride=stride if i == 0 else 1,
                          padding=dilation, bias=False, dilation=dilation),
                BatchNorm(channels),
                nn.ReLU(inplace=True)])
            self.inplanes = channels
        return nn.Sequential(*modules)

    def forward(self, x):
        y = list()

        if self.arch == 'C':
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
        elif self.arch == 'D':
            x = self.layer0(x)

        x = self.layer1(x)
        y.append(x)
        x = self.layer2(x)
        y.append(x)

        x = self.layer3(x)
        y.append(x)

        x = self.layer4(x)
        y.append(x)

        x = self.layer5(x)
        y.append(x)

        if self.layer6 is not None:
            x = self.layer6(x)
            y.append(x)

        if self.layer7 is not None:
            x = self.layer7(x)
            y.append(x)

        if self.layer8 is not None:
            x = self.layer8(x)
            y.append(x)

        if self.out_map:
            x = self.fc(x)
        else:
            x = self.avgpool(x)
            x = self.fc(x)
            x = x.view(x.size(0), -1)

        if self.out_middle:
            return x, y
        else:
            return x


class DRN_A(nn.Module):

    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(DRN_A, self).__init__()
        self.out_dim = 512 * block.expansion
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
                                       dilation=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
                                       dilation=4)
        self.avgpool = nn.AvgPool2d(28, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, BatchNorm):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        # for m in self.modules():
        #     if isinstance(m, nn.Conv2d):
        #         nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        #     elif isinstance(m, nn.BatchNorm2d):
        #         nn.init.constant_(m.weight, 1)
        #         nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes,
                                dilation=(dilation, dilation)))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


def drn_a_50(pretrained=False, **kwargs):
    model = DRN_A(Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


def drn_c_26(pretrained=False, **kwargs):
    model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='C', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-c-26']))
    return model


def drn_c_42(pretrained=False, **kwargs):
    model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-c-42']))
    return model


def drn_c_58(pretrained=False, **kwargs):
    model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-c-58']))
    return model


def drn_d_22(pretrained=False, **kwargs):
    model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='D', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-d-22']))
    return model


def drn_d_24(pretrained=False, **kwargs):
    model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 2, 2], arch='D', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-d-24']))
    return model


def drn_d_38(pretrained=False, **kwargs):
    model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-d-38']))
    return model


def drn_d_40(pretrained=False, **kwargs):
    model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 2, 2], arch='D', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-d-40']))
    return model


def drn_d_54(pretrained=False, **kwargs):
    model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-d-54']))
    return model


def drn_d_56(pretrained=False, **kwargs):
    model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 2, 2], arch='D', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-d-56']))
    return model


def drn_d_105(pretrained=False, **kwargs):
    model = DRN(Bottleneck, [1, 1, 3, 4, 23, 3, 1, 1], arch='D', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-d-105']))
    return model


def drn_d_107(pretrained=False, **kwargs):
    model = DRN(Bottleneck, [1, 1, 3, 4, 23, 3, 2, 2], arch='D', **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['drn-d-107']))
    return model

drn_seg

import math
import torch
import torch.nn as nn
from networks.drn import drn_c_26


def fill_up_weights(up):
    w = up.weight.data
    f = math.ceil(w.size(2) / 2)
    c = (2 * f - 1 - f % 2) / (2. * f)
    for i in range(w.size(2)):
        for j in range(w.size(3)):
            w[0, 0, i, j] = \
                (1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c))
    for c in range(1, w.size(0)):
        w[c, 0, :, :] = w[0, 0, :, :]


class DRNSeg(nn.Module):
    def __init__(self, classes, pretrained_drn=False,
            pretrained_model=None, use_torch_up=False):
        super(DRNSeg, self).__init__()

        model = drn_c_26(pretrained=pretrained_drn)
        self.base = nn.Sequential(*list(model.children())[:-2])
        if pretrained_model:
            self.load_pretrained(pretrained_model)

        self.seg = nn.Conv2d(model.out_dim, classes,
                             kernel_size=1, bias=True)

        m = self.seg
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
        m.bias.data.zero_()
        if use_torch_up:
            self.up = nn.UpsamplingBilinear2d(scale_factor=8)
        else:
            up = nn.ConvTranspose2d(classes, classes, 16, stride=8, padding=4,
                                    output_padding=0, groups=classes,
                                    bias=False)
            fill_up_weights(up)
            up.weight.requires_grad = False
            self.up = up

    def forward(self, x):
        x = self.base(x)
        x = self.seg(x)
        y = self.up(x)
        return y

    def optim_parameters(self, memo=None):
        for param in self.base.parameters():
            yield param
        for param in self.seg.parameters():
            yield param

    def load_pretrained(self, pretrained_model):
        print("loading the pretrained drn model from %s" % pretrained_model)
        state_dict = torch.load(pretrained_model, map_location='cpu')
        if hasattr(state_dict, '_metadata'):
            del state_dict._metadata

        # filter out unnecessary keys
        pretrained_dict = state_dict['model']
        pretrained_dict = {k[5:]: v for k, v in pretrained_dict.items() if k.split('.')[0] == 'base'}

        # load the pretrained state dict
        self.base.load_state_dict(pretrained_dict)


class DRNSub(nn.Module):
    def __init__(self, num_classes, pretrained_model=None, fix_base=False):
        super(DRNSub, self).__init__()

        drnseg = DRNSeg(2)
        if pretrained_model:
            print("loading the pretrained drn model from %s" % pretrained_model)
            state_dict = torch.load(pretrained_model, map_location='cpu')
            drnseg.load_state_dict(state_dict['model'])

        self.base = drnseg.base
        if fix_base:
            for param in self.base.parameters():
                param.requires_grad = False

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_classes)

    def forward(self, x):
        x = self.base(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

你可能感兴趣的:(项目实训,pytorch)